
1

edge.josefhammer.com

Is it feasible to keep a client’s request to a
non-running edge service on hold while
deploying the containerized service?

Distributed On-Demand Deployment
forTransparentAccess to 5G
EdgeComputing Services

Josef.Hammer@aau.at, Hermann Hellwagner

J. Hammer and H. Hellwagner, “Distributed On-Demand Deployment for Transparent Access to 5G Edge Computing Services,” 2023 IEEE Int. Parallel Distrib. Process. Symp. Work., 2023

Routing with a registered service address (IP + port): Using OpenFlow (OF),
the switch (gNB) transparently redirects the request to the edge server

Transparent Access: All requests/responses look like cloud accesses
to the client (UE) – the redirection to the edge is transparent

Three deployment phases – for Kubernetes, we create a
Deployment and Service with zero replicas and scale up separately

Experimental Results

Total time (median) to deploy four different
services on two different clusters. We deployed 42
instances for each test. The numbers highlight the
overhead of an orchestrator like Kubernetes (K8s).

Assembler Web Server – Nginx – TensorFlow Serving
with ResNet50 – Nginx + Python App (2 containers)

edge.josefhammer.com

On-demand deployment with waiting: The user’s request is kept
waiting until a service instance has been deployed. The edge cluster
might first have to pull the required service image from the cloud.

If the scheduler demands a very low response time, the SDN controller redirects the initial request to a running service
instance in an edge further away. In parallel, the controller triggers the deployment of the service in the optimal edge.
As soon as the new instance is running, requests are redirected to this optimal location.

G
oa

l

With Transparent Access to Edge Services, the request is
redirected locally and ideally never reaches the cloud

The requested service might not be
running yet at the local edgeContext Challenge

W
it
ho

ut
W
ai
ti
ng

W
it

h
W

ai
ti

ng

Scale Up Create + Scale Up

