
Distributed On-Demand Deployment for
Transparent Access to 5G Edge Computing Services

Josef Hammer , Hermann Hellwagner
Institute of Information Technology, Alpen-Adria-Universität Klagenfurt, Austria

{ josef.hammer, hermann.hellwagner }@aau.at

Abstract—Multi-access Edge Computing (MEC) is a central
piece of 5G telecommunication systems and is essential to satisfy
the challenging low-latency demands of future applications. MEC
provides a cloud computing platform at the edge of the radio
access network. Our previous publications argue that edge
computing should be transparent to clients, leveraging Software-
Defined Networking (SDN). While we introduced a solution to
implement such a transparent approach, one question remained:
How to handle user requests to a service that is not yet running
in a nearby edge cluster? One advantage of the transparent
edge is that one could process the initial request in the cloud.
However, this paper argues that on-demand deployment might
be fast enough for many services, even for the first request.
We present an SDN controller that automatically deploys an
application container in a nearby edge cluster if no instance is
running yet. In the meantime, the user’s request is forwarded to
another (nearby) edge cluster or kept waiting to be forwarded
immediately to the newly instantiated instance. Our performance
evaluations on a real edge/fog testbed show that the waiting time
for the initial request – e.g., for an nginx-based service – can be
as low as 0.5 seconds – satisfactory for many applications.

Index Terms—Multi-Access Edge Computing, MEC, Fog Com-
puting, Software-Defined Networking, SDN, Serverless Comput-
ing, Container, Docker, Kubernetes

I. INTRODUCTION

The ever-increasing processing and storage demand of the
next generation of Internet of Things (IoT) applications led to
an evolution in distributed computing and initiated the transi-
tion of cloud services closer to the end users [1]. One promis-
ing technology is Multi-access Edge Computing (MEC) [2].
MEC services and convenient access to them are important
building blocks of 5G networks and applications. Particularly
IoT applications can benefit significantly from low-latency and
high-bandwidth offloading capabilities. Benefits may include
lower battery consumption and access to the latest algorithms
without requiring to update the software on the device itself.

Therefore, in [3] and [4], we proposed an efficient solution
to transparently redirect requests for cloud services to the
corresponding services running in local edge hosts (see sec-
tion II and fig. 1). This solution, based on Software-Defined
Networking (SDN) capabilities, (i) simplifies the development
of applications that use edge computing and (ii) allows existing
applications to use edge computing without any modifications.

Unfortunately, such a transparent approach can only work
well if the edge services are already running in an edge cluster
nearby. With potentially millions of edge services, this seems
highly unlikely. Of course, prediction algorithms could be used

Fig. 1. Perceived cloud vs. real cloud. All requests/responses look like cloud
accesses to the client (user equipment; UE) – the redirection to the edge is
transparent. For requests to registered services, the service is deployed either
proactively or on demand on the first request. Depending on the scheduler’s
decision, the first request is sent to the newly deployed instance or another
instance already running in a different edge cluster.

to pre-deploy the required services just in time. However, a
hundred percent correct prediction rate is impossible, even if
machine learning is used to predict future requests (e.g., [5]).
Thus, there will always be plenty of requests that the SDN
controller cannot redirect to a nearby edge cluster but must
forward to the cloud instead. The latter, however, may not be
suitable for applications that require locality awareness or are
very bandwidth-intensive.

Thus, in this paper, we address this crucial piece of a
transparent solution and focus on a simple question: Is it
feasible to keep a client’s request to a non-running edge
service on hold while deploying the containerized service
on demand in a nearby edge cluster? While alternative vir-
tualization technologies like WebAssembly [6] are faster to
launch [7], our focus is on containers as they offer more
flexibility regarding the type and complexity of applications.
We compare the response times for clients’ requests when
deploying two containerized edge services on-demand on
Kubernetes – the most popular container management system
[8] – and Docker – for a lightweight alternative. Alternatively,
we consider redirecting the request to a nearby edge for low-
latency applications while deploying the new service instance.
Once the new instance runs, we redirect requests to the newly
created service instance.

https://orcid.org/0000-0002-8066-4768
https://orcid.org/0000-0003-1114-2584


The main contributions of this work are:
• an SDN controller design and open-source implemen-

tation [9] that deploys containerized applications on-
demand to Docker and Kubernetes clusters and allows
the loading of different scheduler algorithms;

• a three-phases definition of the deployment process of
containerized services;

• an automated annotation of service definition files for
simplified edge service development; and

• a thorough evaluation of the deployment times of four
containerized edge services, representing a variety of
edge service types, on two different types of edge clusters.

The paper has eight sections. First, we provide a short
overview of the approach to transparent access to edge
computing services in section II and survey the related work
in section III. Then, we present our concept in section IV,
followed by the design of our SDN controller in section V.
The corresponding evaluation is shown in section VI, with the
discussion in section VII. Section VIII concludes the paper.

II. BACKGROUND: TRANSPARENT ACCESS

In our transparent access approach [3], [4], all requests/re-
sponses look like cloud accesses to the client (user equipment;
UE) – the redirection to the edge is transparent (fig. 1). The
services to be redirected to the edge are first registered with
a mobile edge platform provider, identified by their unique
combination of domain name/IP address and port number. The
network (i.e., an SDN switch) intercepts any request from a
client to a registered service and automatically redirects it to
the closest available edge server. The edge service processes
the request and responds to the client (user equipment (UE)
in 5G terms). To achieve transparency toward the clients, our
approach uses the packet filtering and rewriting capabilities of
OpenFlow [10] (see fig. 2). We refer to [3] for a description of
the fundamental solution and to [4] for more details. The latter
paper focuses in particular on the performance aspects of our
approach. It presents a prototype implementation of our SDN
controller based on the Ryu framework [11] and an evaluation
of our prototype on a real edge testbed.

III. RELATED WORK

This section reviews existing approaches for transparent
access and the deployment and scheduling of edge services.

Regarding transparent access, Taleb et al. [12] implement
their proposed Follow-me Cloud using OpenFlow. In [13] they
adapted their system to a Follow Me Edge-Cloud that works
in the proposed ETSI MEC environment [14]. The goal of
the underlying concept is to provide a continuous connection
even in case either the user or the service migrates to a
different location. Schiller et al. developed CDS-MEC [15],
an NFV/SDN-based MEC platform, which provides both edge
application provisioning and traffic management. It also relies
on OpenFlow to redirect client requests.

Regarding deployment and scheduling, Fahs et al. [16]–
[18] propose a proximity-aware traffic routing and scheduling
system that integrates with Kubernetes. Their solution routes

Fig. 2. Routing with a registered service address (IP + port): Using OpenFlow
(OF), the request is redirected to the closest edge server, transparent to the
client (UE). For subsequent requests to the same service, the redirection rule
is already known to the switch (gNB); the packet is forwarded directly to the
edge host (and not to the SDN controller anymore). If no service instance
is already running in the chosen edge, the SDN controller first deploys and
launches a new one before redirecting the client’s request to the new instance.

to the optimal Pod using iptables. It can only start from a
Kubernetes node, while our solution is independent of the
cluster type and picks up the request already at the network’s
ingress – using the more efficient network layer. Quang et al.
[19] propose a scheme that enables device-driven on-demand
deployment of serverless computing functions to the edge.
Their work focuses on IoT frameworks, specifically on AWS
Greengrass [20]. The IoT devices communicate via MQTT
with a monitoring function at the edge to trigger a deployment.

Zanni et al. [21] measure deployment times of containers
on Raspberry Pis but not the total time until the application is
ready. Watanabe et al. [22] propose an architecture for enabling
clients to offload parts of applications to MEC servers, with
Kubernetes as the container orchestration system. Mohan et
al. [23] show that the creation and initialization of network
namespaces account for 90 percent of the startup time of
a container. Gackstatter et al. [7] propose that serverless
applications using alternative virtualization technologies like
WebAssembly [6] might be a promising candidate for edge
services since the cold start latency is much lower than for
container-based solutions. Gadepalli et al. [24] and Shillaker
et al. [25] propose efficient frameworks based on WebAssem-
bly. However, containers still offer better security and more
flexibility regarding the type and complexity of applications.

IV. ON-DEMAND DEPLOYMENT

This section presents our concept for the on-demand deploy-
ment of edge services. As explained in the introduction, the
SDN controller redirects incoming requests to edge services
to a specific edge cluster running an instance of the required
service. If such an instance is available, the client’s request is
redirected immediately to the chosen instance, following the
transparent access approach. However, what happens if no
instance is running already in the selected edge cluster?

A. On-Demand Deployment Types

1) On-Demand Deployment with Waiting: The first ap-
proach is to keep the client’s request on hold while a new
instance is launched (see fig. 2 and fig. 5). Since no flow



Fig. 3. If the scheduler demands a very low response time, the SDN controller redirects the initial request to a running service instance in an edge further
away. In parallel, the controller triggers the deployment of the service in the optimal edge (which includes pulling/downloading the service if not yet cached).
As soon as the new instance is running, requests are redirected to this optimal location.

is known to the switch yet, the latter forwards the client’s
request to the SDN controller. Then, as no service instance
runs in the selected edge cluster, the SDN controller triggers
a deployment. Ideally, the required service image is cached
already on the chosen edge cluster. Otherwise, the edge cluster
must pull the required image from the cloud first. Only when
the new service instance is up and running, the SDN controller
responds to the switch and instructs it to redirect the request
to the newly created instance. Finally, the client’s request
gets forwarded to the newly created service instance, which
processes the request and responds to the client.

2) On-Demand Deployment without Waiting: On the other
hand, if the scheduler demands a very low response time, the
second approach to on-demand deployment is chosen. Here,
the SDN controller instructs the switches to redirect the initial
request to a running service instance in another edge (possibly
further away; see fig. 3) or even to forward it to the cloud. In
parallel, the controller triggers the deployment of the service in
the optimal edge cluster (which includes pulling/downloading
the service from the cloud if not yet cached). Future requests
to the same service are redirected to this optimal location as
soon as the new instance is running. Keep in mind that edge
clusters are usually organized hierarchically. Clusters in close
vicinity of the users tend to be smaller, with cluster size and
performance growing when further away (i.e., located closer
to the “cloud”). As a result, a “non-optimal” (further away, but
on the route to the cloud) edge cluster is much more likely to
have the requested service cached or even running already.

B. Scheduling and Dispatching

The decision for a specific edge cluster is taken by the
Scheduler component of our SDN controller. Thus, to keep
our system flexible, the concrete scheduler implementation can
be defined in the controller’s configuration and will be dynam-
ically loaded. Furthermore, our system architecture includes a
Dispatcher component, which feeds the Scheduler with
information about the current system state and is responsible

for checking and triggering the deployment of edge services.
This component also tracks the clients’ current location.

We distinguish two types of schedulers (fig. 6):
1) Global Scheduler: responsible for choosing the appro-

priate edge cluster. It is aware of which edge clusters provide
existing and running service instances and returns two results:

a) FAST: The fastest location for the current request.
b) BEST: The best location for future requests.

The latter is returned empty if equal to the FAST choice; if
non-empty, we have On-Demand Deployment without Waiting.
If FAST is empty, the request is forwarded toward the cloud.

2) Local Scheduler: responsible for choosing a specific
service instance within an edge cluster. With a Kubernetes
cluster, the K8s scheduler might represent the Local Scheduler;
however, we might also use a different one. Furthermore, for
Kubernetes, we can even define a custom scheduler – like the
ones in [26], [27] – to be used for our edge services only.

C. Deployment Phases

In this work, we distinguish three phases for the deployment
of an edge service instance (fig. 4). First, unless already
cached, the edge cluster needs to Pull the required con-
tainer images or, with serverless computing, download the
source code from the cloud. Second, the service needs to be
Created. For Docker, we define this as creating a container;
for Kubernetes, a new Deployment and Service are created
(with zero replicas). Third, the edge cluster needs to Scale
Up a new instance. For Docker, the container is started;
for Kubernetes, the number of replicas is increased. When
the service is not required anymore, either the controller or
cluster may Scale Down and even Remove the service. The
latter phase removes the Docker containers and Kubernetes
Deployments and Services. Optionally, but unlikely, the cached
items may also be Deleted if disk space is scarce. Even if
a container image is deleted, some of its layers may be used
by other images. Therefore, the next time the system pulls the
same image again, it may no longer have to pull all layers.



Fig. 4. We distinguish three phases for the deployment of an edge service
instance. First, unless already cached, the edge cluster needs to Pull the
required container images from the cloud. Second, the service needs to be
Created. For Docker, we create a container; for Kubernetes, a Deployment
and Service are created (with zero replicas). Third, the edge cluster needs
to Scale Up a new instance. For Docker, the container is started; for
Kubernetes, the number of replicas is increased. When the service is not
required anymore, the controller or cluster may Scale Down and even
Remove the service. The latter removes the Docker containers and Kubernetes
Deployments and Services. Optionally, even the images may be Deleted.

V. DESIGN

This section presents the design decisions we made for the
on-demand deployment components of our SDN controller.
First, we decided to not only instruct the switches with the
flows that redirect requests to specific edge service instances.
Instead, we also memorize all these flows in a component
called FlowMemory. This approach allows us to keep the
idle timeout values in the switches low – if a request from the
same client to the same service comes in later, we can redirect
the request to the same service used before. However, also the
memorized flows have an idle timeout after which they are
removed from the FlowMemory. Apart from removing stale
flows, these timeouts serve a second purpose: Our controller
may automatically scale down idle edge service instances.

First, however, let us look at how the Dispatcher and
the Scheduler decide where to create a service instance.
Fig. 7 shows the SDN controller’s dispatching algorithm flow
chart. If no memorized flow exists in the FlowMemory,
the Dispatcher component gathers a list of existing
and running instances of the requested service. Next, the
Dispatcher passes this list to the Scheduler component.
The latter returns two choices: a FAST choice for the current
request, and a BEST choice for future requests. Then the
Dispatcher checks whether the two service instances still
need to be created and scaled up. For communicating with
Docker and the Kubernetes cluster, we use the respective
Python client libraries (see [9]). Once the FAST service is
available, the controller instructs the switch(es) to redirect the
client’s request to that service instance.

So, where does the SDN controller get the necessary in-
formation about the services? Each edge service needs to be
defined in a separate YAML file. We use the established and
well-defined Kubernetes Deployment definition file format. It
does not matter whether the edge cluster is running Docker or

Fig. 5. On-demand deployment with waiting: The user’s request is kept
waiting until a new service instance has been deployed. When a user sends
a request (1) to a new service, the switch forwards it to the SDN controller
(2). Since no service instance runs in the nearest/optimal edge cluster, the
controller triggers a deployment (3). The edge cluster might first have to pull
the required service image from the cloud (4). Only when the new service
instance is up and running, the controller responds to the switch and instructs
it to redirect the request to the newly created instance (6). Finally, the user’s
request gets sent to (7) and is answered by the newly created instance (8, 9).

Kubernetes – we use the same service definition for both. The
only mandatory data is the name of the image. In addition
to that, the file may include anything valid in a Kubernetes
Deployment definition. For Docker, only a subset of the values
(like volume mounts) are currently parsed.

For deployment in a Kubernetes cluster, our system au-
tomatically annotates the service definition with additional
information. This approach keeps the system flexible, the
definition files lean, and lifts some of the burdens from the
developers. First, we automatically set a unique worldwide
name for each service – something developers may easily
forget when developing their own services only. Second,
we add all the matchLabels required by Kubernetes. In
addition to these, we also add a label named edge.service
to be able to address and query edge services in the cluster
distinctly. By default, we set the number of replicas to 0
(“scale to zero”). If a Local Scheduler (fig. 6) has been defined
in the controller configuration for the particular edge cluster,
we set it as the value for the schedulerName key.

Finally, we automatically create a Kubernetes Service def-
inition (unless the developer already included one in the
YAML file). In addition to the unique name and the labels,
the generated Service definition will contain the exposed port
where the service can be reached, the target port of the service
instance, and, by default, TCP as the protocol. Our system
also adds labels to Docker deployments to allow addressing
and querying edge services distinctly. Volume mappings to the
host file system are supported. For details we refer to [9].



Fig. 6. We distinguish two types of schedulers: A Global Scheduler is
responsible for choosing the appropriate edge cluster, while a Local Scheduler
is responsible for choosing a specific service instance within an edge cluster.

VI. EVALUATION

For our research on edge/fog computing we deployed a
real testbed named Carinthian Computing Continuum (C3)
presented in [1]. C3 aggregates a large set of heterogeneous
resources and includes an edge computing layer. The entry
point to the edge layer is the Edge Gateway Server (EGS), a
64-bit x86 system with an AMD Ryzen Threadripper 2920X
(12 cores, 3.5 GHz, 32 GiB memory) running Ubuntu 18.04.
Among the other edge resources are 35 Raspberry Pi 4B
running Raspberry PI OS (Buster) – all with four cores and 4
GiB of memory. The EGS supports 10 Gbps Ethernet; the
other nodes utilize 1 Gbps Ethernet. A layer-3 HP Aruba
switch with 1 Gbps ports connects the devices. For our
experiments, we use an overlay network that forms a virtual
emulation network. Fig. 8 shows the virtual network topology
used for the evaluation. The SDN controller, the virtual OVS
switch, the Kubernetes (K8s) cluster, and Docker run on the
Edge Gateway Server (EGS); the clients on 20 Raspberry Pis.

We evaluated our on-demand deployment approach using
four different edge services (table I). We chose an Nginx
web server for a service representing a typical use case
and container image size. For the previous years, Nginx has
been the most popular container image, used by nearly 50
percent of organizations that use containers [8]. Additionally,
as an extreme case, we chose a web server written entirely
in Assembler, asmttpd [28], representing the smallest and
fastest web service possible (image size: just 6.18 KiB!). This
webserver’s negligible launch time allows us to measure the
minimal overhead of starting a service in a container. Both
edge services read a short plain-text file and return its content.

Our focus here is on the time required to start a service, and
we assume most edge services will be small microservices
instead of heavyweight applications. Nevertheless, we also
added two additional edge services to evaluate other scenarios.
As an example of a slightly more heavyweight service, we
decided on an edge service for image classification. Since
images and videos require a lot of bandwidth, such services
are ideal candidates for edge services. We chose a TensorFlow

Fig. 7. The SDN controller’s dispatching algorithm. If no flow is memorized
in the FlowMemory, the Dispatcher gathers a list of available and
running instances and passes it to the Scheduler, which returns two choices:
A FAST choice for the current request, and a BEST choice for future requests.
If necessary, both chosen instances are created and scaled up.

Serving container with a pre-trained ResNet50 model built into
the container. Loading a model takes time; thus, we expect
a higher startup time for this service. With this service, the
clients send a cat picture for classification (83 KiB payload).

More complex applications usually combine several mi-
croservices. Thus, with our fourth edge service, we wanted to
test how multiple containers impact deployment performance.
We combined the already mentioned Nginx with a simple
Python application. On startup, the application reads environ-
ment variables and configuration data from a folder shared
by the host system. The gathered information and the current
timestamp are then written once per second to the index.html
file shared with the Nginx container.

These four services were evaluated in two different edge
cluster environments: a Kubernetes (K8s) cluster and a Docker
“cluster”, both running on the powerful EGS (see fig. 8). Note
that both Kubernetes and Docker use the same containerd



TABLE I
EDGE SERVICES USED IN THIS WORK.

Service Image(s) Size / Layers Containers HTTP

Asm Assembler Web Server (asmttpd [28]) josefhammer/web-asm:amd64 6.18 KiB / 1 1 GET

Nginx Nginx Web Server nginx:1.23.2 135 MiB / 6 1 GET

ResNet TensorFlow Serving with pre-trained ResNet50 model gcr.io/tensorflow-serving/resnet 308 MiB / 9 1 POST

Nginx+Py Nginx Web Server + Python Application nginx:1.23.2 + josefhammer/env-writer-py 181 MiB / 7 2 GET

Fig. 8. The topology used for the evaluation. The SDN controller, the virtual
OVS switch, Docker, and the Kubernetes (K8s) cluster run on the Edge
Gateway Server (EGS). The client applications run on 20 Raspberry Pis.

container runtime on the EGS. We evaluated all three de-
ployment phases shown in fig. 4. To emulate varying and
realistic numbers of requests coming in simultaneously, we
utilized the five-minute bigFlows.pcap [29] real network
traffic capture. We extracted all TCP conversations to public IP
addresses and filtered for requests to port 80. As edge service
addresses, we selected all destination addresses receiving a
minimum of 20 requests – leading us to 42 services receiving
1708 requests (fig. 9). We use a single service type per test
run. Every time a service instance is not running yet, it will be
deployed by the SDN controller – leading to the deployment
distribution shown in fig. 10. Note that the total times shown
in the following figures (except the pull times in fig. 13)
represent the total time for a client requesting a response from
an edge service, i.e., from when the client sends the request
until it receives the response. We measured the times using
our timecurl.sh [30] script. The time_total provided by
Curl includes everything from when Curl starts establishing a
TCP connection until it gets a response for the HTTP request.

The most critical phase is the Scale Up phase. This step
cannot be avoided by caching artifacts on a disk – which would
be cheap compared to keeping an idle instance running. Fig. 11
shows the total time when the four services only require to be
scaled up. The numbers highlight the significant difference

0 50 100 150 200 250 3000
10
20
30
40
50

Re
qu

es
ts

/s

Fig. 9. Distribution of 1708 requests to 42 different edge services over five
minutes (from a real network traffic dataset). If a service is not running yet, it
will be deployed by the SDN controller – leading to the distribution in fig. 10.

0 50 100 150 200 250 3000
2
4
6
8

10

De
pl

oy
m

en
ts

/s

Fig. 10. Distribution of 42 edge service deployments over five minutes –
with up to eight deployments per second in the beginning.

between just starting a container via Docker (less than one
second) and the overhead of starting the same container on a
complex orchestrator like Kubernetes (around three seconds).
Note that after scaling up an edge service, our SDN controller
needs to wait until the service is fully started and ready to
serve (fig. 14 and fig. 15). Therefore, before setting up the
flows, the controller continuously tests if the respective port is
open. Otherwise, with the port still closed, the server would
reject the client’s request.

Interestingly, there is no notable difference between starting
the tiny Assembler web server and the far larger Nginx
instance. As expected, ResNet takes significantly longer to
start; the waiting time alone (fig. 14) accounts for more than
a fourth of the total time. If the containers for the service do
not exist yet, we need to both Create and Scale Up the
service. Fig. 12 shows that creating the containers adds around
100 ms to the response time of the first request – except for
ResNet, which shows no overhead.

If the service image is not yet cached on the edge cluster,
the next critical phase is the Pull phase. Fig. 13 shows the
total time to pull (download) the different service container
images onto the Edge Gateway Server (EGS) from Docker
Hub or – in the case of the ResNet container – from Google
Container Registry. When pulling the same images from a
private container registry located in the same network, pull
times improve by about 1.5 to 2 seconds. The Pull phase



0 s

2 s

4 s

6 s
Ti

m
es

 fo
r f

irs
t H

TT
P 

re
qu

es
t Docker

0.50 0.52

1.90

0.74

Kubernetes

Asm Nginx ResNet Nginx+Py

3.11 3.14
3.55

3.15

Fig. 11. Total time (median) to scale up four different services on two
different clusters. We scaled up 42 instances for each test (see fig. 10). The
numbers highlight the overhead of an orchestrator like Kubernetes (K8s).

0 s

2 s

4 s

6 s

Ti
m

es
 fo

r f
irs

t H
TT

P 
re

qu
es

t Docker

0.60 0.63

1.89

0.91

Kubernetes

Asm Nginx ResNet Nginx+Py

3.26
3.72 3.94

3.46

Fig. 12. Total time (median) to create + scale up four different services on
two different clusters. We created + scaled up 42 instances for each test.

0 s

2 s

4 s

6 s

Pu
ll 

tim
es

Docker Hub / GCR

2.18

4.53

5.67

4.62

Local Registry

Asm Nginx ResNet Nginx+Py

0.22

3.06

4.09

3.27

Fig. 13. Total time to pull (download) the different service container images
onto the Edge Gateway Server (EGS) from Docker Hub or – in the case of the
ResNet container – from Google Container Registry. Alternatively, we pull
from a private container registry located in the same network.

is where the minuscule Assembler web server image shines
compared to far larger images like Nginx. Note that images are
built up of layers; pull times depend on both the image’s total
size and its number of layers to be downloaded and verified.
Furthermore, popular base layers of the image might also be
included in other cached images and thus already be on disk.

Once the new service instance is up and running, the benefits
of running applications at the edge show. Fig. 16 presents
the total time for requests from a client to the edge services
once the service instance is up and running on the cluster.

0 s

2 s

4 s

6 s

W
ai

t t
im

es
 ti

ll 
se

rv
ice

 is
 re

ad
y Docker

0.00 0.01
0.52

0.01

Kubernetes

Asm Nginx ResNet Nginx+Py

0.21 0.21 0.21 0.21

Fig. 14. Wait time (median) until the services are ready after being scaled
up on two different clusters. Our SDN controller continuously tests whether
the respective port is open before setting up the flows. Included in fig. 11.

0 s

2 s

4 s

6 s

W
ai

t t
im

es
 ti

ll 
se

rv
ice

 is
 re

ad
y Docker

0.00 0.01
0.57

0.01

Kubernetes

Asm Nginx ResNet Nginx+Py

0.21 0.32 0.55 0.42

Fig. 15. Wait time (median) until the services are ready after being created
+ scaled up on two different clusters. Included in fig. 12.

As expected, here we see no notable difference between the
two clusters. However, while serving a short response message
is achieved in about a millisecond, the heavyweight image
classification service (ResNet) requires significantly longer.

VII. DISCUSSION

Our results in the previous section show that delaying the
client’s request for on-demand deployment might be feasible
for many use cases. Response times of less than one second
(with cached Docker images) should be sufficient for all but
the most latency-critical applications. And while the signif-
icantly higher values of about three seconds might be too
much, Kubernetes provides us with automated management
and scaling of container instances. However, we can combine
the best of both worlds. First, we launch an edge service via
Docker to respond faster to the initial request. Then, we deploy
the same service to Kubernetes for future requests. This way,
we can have both fast initial response (Docker) and automated
cluster management (Kubernetes).

In particular, the presented approach is a good option for use
cases where a high-bandwidth or locality awareness is more
critical than an ultra-low-latency response. Complex applica-
tions consisting of multiple microservices are also a good fit.
While the initial service is already processing the request, we
can still scale up the services later in the workflow. Even many
applications that require a low-latency response time might not



0 ms

50 ms

100 ms

150 ms

200 ms
Ti

m
es

 fo
r H

TT
P 

re
qu

es
ts

Docker

0.94 1.02

101.04

1.00

Kubernetes

Asm Nginx ResNet Nginx+Py

0.92 1.05

103.21

1.02

Fig. 16. Total time (median) for client requests to the edge services when
the instance is already running on the cluster.

require such a fast response for the initial request. Many of
these applications may tolerate a higher response time during
the setup phase, requiring a low-latency response only once
running. Therefore, on-demand deployment, in combination
with transparent access to edge services, provides an excellent
fit for many use cases. More so when combined with good
prediction for proactive deployment.

VIII. CONCLUSION AND FUTURE WORK

In [3], [4], the multiple benefits of transparent access to edge
computing services were highlighted, and an efficient approach
to implementing such a transparent approach was presented.
However, a transparent approach can only work well if the
edge services are already running in an edge cluster nearby.
In this work, we showed that delaying the client’s request
for on-demand deployment of containerized services might
be feasible for many use cases. Provided that the required
container images are locally cached already, response times
of less than one second – for the first request – can be
achieved when using Docker. This should be sufficient for all
but the most latency-critical applications. When deploying to
a Kubernetes cluster, it takes significantly longer to start a new
service instance – about three seconds – which makes it less
suitable for the first request. However, even with applications
that require lower response times, an on-demand deployment
is a good approach – as long as at least one instance is already
running in a nearby edge to process the requests until the new
instance is up. In future work, we plan to extend our solution
for transparent access by enabling the side-by-side operation
of containers and serverless applications and evaluate how well
the latter would perform in a transparent access approach.

ACKNOWLEDGEMENT

This work received funding from the Austrian Research
Promotion Agency (FFG; Grant 888098, Kärntner Fog).

REFERENCES

[1] D. Kimovski, R. Matha, J. Hammer, N. Mehran, H. Hellwagner,
and R. Prodan, “Cloud, Fog, or Edge: Where to Compute?”
IEEE Internet Comput., vol. 25, no. 4, pp. 30–36, 2021. [Online].
https://ieeexplore.ieee.org/document/9321525/

[2] ETSI, “MEC in 5G networks,” ETSI White Pap. No. 28, 2018.

[3] J. Hammer, P. Moll, and H. Hellwagner, “Transparent Access
to 5G Edge Computing Services,” in 2019 IEEE Int. Parallel
Distrib. Process. Symp. Work. IEEE, 2019, pp. 895–898. [Online].
https://ieeexplore.ieee.org/document/8778343/

[4] J. Hammer and H. Hellwagner, “Efficient Transparent Access to 5G Edge
Services,” in 2022 IEEE 8th Int. Conf. Netw. Softwarization. IEEE,
2022, pp. 91–96. [Online]. https://ieeexplore.ieee.org/document/9844066

[5] Y. Miao, F. Lyu, F. Wu, H. Wu, J. Ren, Y. Zhang, and X. S. Shen,
“Mobility-Aware Service Migration for Seamless Provision: A Rein-
forcement Learning Approach,” IEEE Int. Conf. Commun., 2022.

[6] “WebAssembly – Binary Instruction Format for a Stack-Based Virtual
Machine.” [Online]. https://webassembly.org/

[7] P. Gackstatter, P. A. Frangoudis, and S. Dustdar, “Pushing Serverless to
the Edge with WebAssembly Runtimes,” Proc. - 22nd IEEE/ACM Int.
Symp. Clust. Cloud Internet Comput. CCGrid 2022, pp. 140–149, 2022.

[8] “Datadog Container Research Report 2022.” [Online]. https://www.
datadoghq.com/container-report/ (accessed 2022-12-13).

[9] “Transparent Edge – Transparent Access to Edge Computing Services.”
[Online]. https://josefhammer.com/r/transparent-edge-repo/

[10] Open Networking Foundation, “OpenFlow Switch Specification v1.5.1,”
Open Networking Foundation, Tech. Rep., 2015.

[11] “Ryu – Component-Based Software-Defined Networking Framework.”
[Online]. https://ryu-sdn.org/

[12] T. Taleb, P. Hasselmeyer, and F. G. Mir, “Follow-me cloud: An
OpenFlow-based implementation,” Proc. GreenCom-iThings-CPSCom,
pp. 240–245, 2013.

[13] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “On Enabling
5G Automotive Systems Using Follow Me Edge-Cloud Concept,” IEEE
Trans. Veh. Technol., vol. 67, no. 6, pp. 5302–5316, 2018.

[14] ETSI, “GS MEC 003 - V2.1.1 - Multi-access Edge Computing (MEC);
Framework and Reference Architecture,” ETSI, Tech. Rep., 2019.

[15] E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan, and T. Braun,
“CDS-MEC: NFV/SDN-based Application Management for MEC in 5G
Systems,” Comput. Networks, vol. 135, pp. 96–107, 2018.

[16] A. J. Fahs and G. Pierre, “Proximity-Aware Traffic Routing in Dis-
tributed Fog Computing Platforms,” CCGrid, 2019.

[17] A. Fahs and G. Pierre, “Tail-Latency-Aware Fog Application Replica
Placement,” ICSOC 2020 - 18th Int. Conf. Serv. Oriented Comput., 2020.

[18] A. J. Fahs, G. Pierre, and E. Elmroth, “Voilà: Tail-Latency-Aware Fog
Application Replicas Autoscaler,” Proc. - IEEE Comput. Soc. Annu. Int.
Symp. Model. Anal. Simul. Comput. Telecommun. Syst. MASCOTS, 2020.

[19] T. Quang and Y. Peng, “Device-driven On-demand Deployment of
Serverless Computing Functions,” in IEEE Int. Conf. Pervasive Comput.
Commun. Work., 2020.

[20] “AWS IoT Greengrass.” [Online]. https://aws.amazon.com/greengrass/
[21] A. Zanni, S. Forsstrom, U. Jennehag, and P. Bellavista, “Elastic Pro-

visioning of Internet of Things Services Using Fog Computing: An
Experience Report,” Proc. - 6th IEEE Int. Conf. Mob. Cloud Comput.
Serv. Eng. MobileCloud, pp. 17–22, 2018.

[22] H. Watanabe, R. Yasumori, T. Kondo, K. Kumakura, K. Maesako,
L. Zhang, Y. Inagaki, and F. Teraoka, “ContMEC: An Architecture of
Multi-access Edge Computing for Offloading Container-Based Mobile
Applications,” IEEE Int. Conf. Commun., 2022.

[23] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhom-
linov, “Agile Cold Starts for Scalable Serverless,” 11th USENIX Work.
Hot Top. Cloud Comput. HotCloud 2019, 2019.

[24] P. K. Gadepalli, G. Peach, L. Cherkasova, R. Aitken, and G. Parmer,
“Challenges and Opportunities for Efficient Serverless Computing at the
Edge,” Proc. IEEE Symp. Reliab. Distrib. Syst., pp. 261–266, 2019.

[25] S. Shillaker and P. Pietzuch, “FAASM: Lightweight Isolation for Effi-
cient Stateful Serverless Computing,” Proc. 2020 USENIX Annu. Tech.
Conf. ATC 2020, pp. 419–433, 2020.

[26] N. Mehran, Z. N. Samani, D. Kimovski, and R. Prodan, “Matching-
based Scheduling of Asynchronous Data Processing Workflows on the
Computing Continuum,” IEEE Int. Conf. Clust. Comput. ICCC, 2022.

[27] N. Mehran, D. Kimovski, and R. Prodan, “A Two-Sided Matching Model
for Data Stream Processing in the Cloud – Fog Continuum,” Proc. - 21st
IEEE/ACM Int. Symp. Clust. Cloud Internet Comput. CCGrid, 2021.

[28] “asmttpd - Web server written in amd64 assembly (v0.4.5).” [Online].
https://josefhammer.com/r/asmttpd

[29] “Tcpreplay: Sample Captures.” [Online]. https://tcpreplay.appneta.com/
wiki/captures.html (accessed 2023-02-07).

[30] “Timecurl – Measure HTTP Request/Response Times using Curl.”
[Online]. https://josefhammer.com/r/timecurl/

https://ieeexplore.ieee.org/document/9321525/
https://ieeexplore.ieee.org/document/8778343/
https://ieeexplore.ieee.org/document/9844066
https://webassembly.org/
https://www.datadoghq.com/container-report/
https://www.datadoghq.com/container-report/
https://josefhammer.com/r/transparent-edge-repo/
https://ryu-sdn.org/
https://aws.amazon.com/greengrass/
https://josefhammer.com/r/asmttpd
https://tcpreplay.appneta.com/wiki/captures.html
https://tcpreplay.appneta.com/wiki/captures.html
https://josefhammer.com/r/timecurl/

	Introduction
	Background: Transparent Access
	Related Work
	On-Demand Deployment
	On-Demand Deployment Types
	On-Demand Deployment with Waiting
	On-Demand Deployment without Waiting

	Scheduling and Dispatching
	Global Scheduler
	Local Scheduler

	Deployment Phases

	Design
	Evaluation
	Discussion
	Conclusion and Future Work 
	References

