
TinyTricia – A Space-Optimized Patricia Trie For
Transparent Access to Edge Computing Services

Josef Hammer , Hermann Hellwagner
Institute of Information Technology, Alpen-Adria-Universität Klagenfurt, Austria

{firstname}.{lastname}@aau.at

Abstract—Multi-access Edge Computing (MEC) is an essential
piece of 5G telecommunication systems to satisfy the challenging
low-latency demands of future applications. Our previous pub-
lications argue that edge computing should be transparent to
clients. We introduced an efficient solution to implement such a
transparent approach, leveraging Software-Defined Networking
and virtual IP+port addresses for registered edge services. A
core component of our architecture is a Patricia Trie, which
stores all our virtual IP+port addresses. Unfortunately, most
implementations of Patricia Tries are not geared toward use cases
with millions of keys where a low memory footprint becomes
essential. In this paper, we present TinyTricia, a space-efficient
open-source implementation of a Patricia Trie for keys up to 256
bits. TinyTricia can keep track of up to half a billion (229) keys
⩽ 57 bits and up to a quarter of a billion (228-1) keys ⩽ 256 bits
with tiny memory requirements. In the latter case, each key can
have a data value of any type. Keys ⩽ 57 bits require only 8 to 16
bytes per key (i.e., only 0 to 8 bytes overhead per 57-bit key); for
keys ⩾ 58 bits, add the key size (in whole bytes) to these values.
Thus, for 16.78 million (224) 57-bit keys, our solution requires
between 128 and 256 MiB of memory. Unlike some other space-
efficient implementations, TinyTricia allows adding and removing
keys at runtime.

Index Terms—Patricia Trie, Multi-Access Edge Computing,
Space-Optimized, Low Memory Footprint, Software-Defined Net-
working, IPv4, IPv6

I. INTRODUCTION

Multi-access Edge Computing (MEC) services and conve-
nient access to them are important building blocks of 5G
networks and applications. In [1] and [2], we proposed a
solution to transparently redirect requests to cloud services
to the corresponding services running in local edge hosts.
This solution, based on Software-Defined Networking (SDN)
capabilities, (i) simplifies the development of applications that
use edge computing and (ii) allows existing applications to use
edge computing without any modifications.

In our transparent access approach, the services to be
redirected to the edge are first registered with a mobile
edge platform provider (fig. 1), identified by their unique
combination of domain name/IP address and port number. The
network (i.e., an SDN switch) intercepts any request from a
client to a registered service and automatically redirects it to
the closest available edge node. The edge service processes
the request and responds to the client (UE in 5G terms). To
achieve transparency toward the clients, our approach uses the
packet filtering and rewriting capabilities of OpenFlow [3] (see
fig. 2). We refer to [1] for a description of the fundamental
solution and discussions about the limitations and scaling

Fig. 1. Perceived cloud vs. real cloud. All requests/responses look like cloud
accesses to the client (user equipment; UE) – the redirection to the edge is
transparent.

Fig. 2. Routing with a registered service IP: The request is redirected to the
closest edge server; transparent to the client (UE). For subsequent requests, the
redirection rule is already known to the switch (gNB); the packet is forwarded
directly to the edge host (and not to the controller anymore).

options. Furthermore, we refer to [2] for more details (in
particular regarding the performance aspects of our approach),
a prototype implementation of our SDN controller based on
the Ryu framework [4], and an evaluation of our prototype on
a real edge testbed.

One central aspect of our architecture is minimizing the
number of flows – for the best utilization of the high-speed
and expensive ternary content-addressable memory (TCAM)
often used for the flow tables in hardware switches [5]. To
be able to detect requests to virtual addresses in our SDN
controller, we need to set up separate flows for all destination
addresses. However, instead of adding an individual flow for
each non-virtual address requested by a client, we use flows
with a prefix (i.e., subnet mask) to match as many regular IP

https://orcid.org/0000-0002-8066-4768
https://orcid.org/0000-0003-1114-2584


Fig. 3. A simple Patricia Trie containing three 32-bit keys (k = 32).

addresses as possible. Of course, that prefix must not match
any of our registered virtual IP addresses. We call such a prefix
the Unique Prefix and introduced it in [2]. Using a binary
path-compressed search trie (e.g., a Patricia Trie) to store and
retrieve virtual addresses lets us quickly determine this Unique
Prefix. This question would be less straightforward to answer
with general (i.e., non-binary) prefix tries (“radix tries”); thus,
we decided to focus on Patricia tries for our use case.

A Patricia trie (or Patricia tree) is a variant of a binary
radix trie [6] where the internal nodes only store the position
of the first bit (“prefix”) that differentiates two sub-tries. As a
path-compressed trie, an internal node only exists if necessary,
i.e., if at least two keys differ at that specific bit of the key
(see fig. 3). Therefore, for a key with k bits, one needs at most
k comparisons (a lot fewer on average) to find any element
in the trie (O(k)). This structure is ideal for storing/retrieving
IP addresses where many keys share the same prefix. Thus,
routers often use Patricia tries to match an incoming IP address
against subnets registered in the trie.

Our use case is slightly different: We use the Patricia
trie to efficiently search through (virtual) socket addresses,
with the keys being a concatenation of IP address and port
number. Therefore, all our keys have the same fixed length:
48 bits (32 + 16) for IPv4 or 144 (128 + 16) for IPv6. As an
additional requirement, our implementation must be able to
cope with millions of keys with minimal memory requirements
to run it on resource-constrained devices like Raspberry Pis.
In particular, we focused on Python-based implementations,
as our main project – the SDN controller – is also written
in Python. Finally, we needed an implementation that could
answer one central question for our work: If a key is not part
of the Patricia trie yet, how many of its most significant bits
are already included? In other words, with which prefix would
our key be inserted? The answer is required to calculate our
Unique Prefix (see fig. 4 and the section on Unique Prefix
Calculation in [2] for details). On the other hand, having a
data value per key was not a strict requirement for our use
case and was thus optional.

Since we could not find a suitable Patricia trie module for
our requirements, we developed and open-sourced TinyTricia
[7], a space-efficient implementation for keys up to 256 bits.
With TinyTricia, we can keep track of up to half a billion
(229) IPv4 and up to a quarter of a billion (228-1) IPv6 socket

Fig. 4. Unique Prefix calculation for a given search address.

addresses with tiny memory requirements. Unlike some other
space-efficient implementations, TinyTricia allows adding and
removing keys at runtime – which is essential given the online
nature of our use case. For 16.78 million (224) 48-bit keys
(IPv4), we would need between only 128 and 256 MiB of
memory – ideal for tracking a vast number of keys (e.g., our
registered edge services from developers worldwide).

In this paper, first, we survey the related work in section II.
We present TinyTricia’s design in section III and the perfor-
mance considerations in section IV. Sections V and VI show
the limitations and evaluation. Section VII concludes the paper.

II. RELATED WORK

Prefix trees (“Tries”) have been around for a long time [8].
Later, Morrison coined the term Patricia Trie in [9], where he
introduced path compression to store long strings efficiently.

Andersson and Nilsson added level compression in [10],
which Nilsson and Karlsson used in [11] for the LC-trie – a
trie structure that combined both path and level compression
for fast IP address lookup. By restricting the node size to
32 bits, their approach, while highly memory-efficient, allows
only a small number of keys with a length of at most 128
bits. Kim et al. proposed FAST [12], a method of laying
out binary search trees in an architecture-sensitive way to
improve processor cache line utilization. Similar to LC-trie,
they also use arrays to avoid the storage overhead required for
memory pointers. However, unlike TinyTricia, these algorithms
require a sorted set of keys as input, and the tries are non-
modifiable after construction. That is, both data structures do
not support incremental updates and thus are not well-suited



for use in online algorithms. Since Patricia tries have a worst-
case search complexity of O(k), one could use a general (i.e.,
non-binary) prefix trie (“radix trie”) to reduce the value of k
significantly. However, these tries suffer from poor memory
utilization due to partially empty nodes. As an improvement,
the Adaptive Radix Tree was introduced in [13]. However, their
more complex algorithm is less suited for resource-constrained
devices. More importantly for our use case, a non-binary prefix
trie makes it less straightforward to calculate our Unique
Prefix.

III. DESIGN

Our main design goal was low memory consumption for
keys with either 48 (IPv4 + port) or 144 (IPv6 + port) bits
– both optionally carrying a data value. This goal led to a
design with two slightly different modes: Regular Mode and
Compact Mode. The latter is only for keys up to 57 bits with
no data value but provides – as the name suggests – an even
better memory utilization. Depending on the specific use case,
TinyTricia can operate in one of these two modes.

Further goals included a high search performance (see
section IV) and versatility: We envisioned TinyTricia as a
building block, not a specialized tool for a specific use case.
For example, many existing modules are targeted toward a
specific use case like IPv4 or IPv6 addresses – thus not suitable
for our keys with 48 or 144 bits. Consequently, TinyTricia
works with plain keys and does not provide specific features
like converting textual IP addresses to numbers. These specific
features can always be added as an additional layer on top.

This section, however, focuses on our main goal: low
memory consumption. One of the memory-saving traits shared
by both modes is: Nodes do not contain a link to their parent.
Thus, during the tree traversal, the algorithm keeps track of
the parents for cases where reverse traversal is required (e.g.,
inserting a new element).

Usually, tree algorithms use nodes with pointers to their
child nodes. Pointers make it easy to insert and remove child
nodes and do not put a limit on the total number of keys.
However, this approach is quite memory-intensive as each
pointer requires 32 or 64 bits to be stored (depending on
the hardware architecture). Thus, as typical with solutions for
small memory requirements, our solution uses an array-based
approach that uses indices instead of pointers. Depending on
how many total keys shall be supported, these indices require
significantly fewer bits than regular pointers.

Fig. 5 shows an example trie (Actual Patricia Trie), what it
looks like in our implementation (Logical View), and how we
map the tree to arrays (Storage View). We explain the technical
details in the remainder of this section.

A. Regular Mode

This default mode is suited for keys up to 256 bits. Since
our use case requires keys with up to 144 bits (k = 144; IPv6
address + port number), we need at least 8 bits for the prefix
value – 0 to 143. Our prefix values only go up to k − 1 (not
k; explained below), leading us to the maximum key length

Fig. 5. TinyTricia example with keys added in the following order:
100.0.0.255, 101.1.0.42, 100.0.0.254. For optimal memory utilization, the last
(kth) bit is always checked.

of 256 bits. We already decided to omit the usual link to the
parent; thus, all our nodes need to store are the prefix and
two indices for both left and right child nodes. To best utilize
each storage bit, packing all three values into a single integer
value proved to be the best option. Therefore, we settled on
a 64-bit integer array (called nodes): 8 bits for the prefix
leave us with 56 bits for both child indices (see fig. 6). With
a 28-bit index field, we can address up to 268,435,456 nodes.
Since our Patricia trie uses a fixed key length, only leaf nodes
may contain keys. Therefore, for n keys, we also need n− 1
non-leaf nodes – leaving us with 227 possible keys – sufficient
for our use cases.

Unfortunately, it is impossible to store a 256-bit key in a
28-bit index field; thus, we need to store the keys in a separate
array (keys). As with a map, in Regular Mode, each key can
have a data value of any type, which we store in another array
called data. Again, the leaf nodes do not store a pointer but
the index to the correct entry in the keys array – which we
call the key’s ID. In order to save memory, the same ID is
used for accessing both the keys and data array.

Storing both keys and data values in arrays separate from
nodes has an excellent additional benefit: The nodes data
structure is independent of both the length of the key and the
size of one data value. Increasing, e.g., the key length from 64



Fig. 6. TinyTricia data structures. Data array is optional to save memory.

bits to 256 bits does not affect the nodes data structure: each
node still fits nicely within one 64-bit machine word. The only
thing that needs to be adapted is the size of the items in the
keys array. Furthermore, the size of one data value is also
independent of the length of the key. Moreover, if no values
are required, the data value storage can easily be disabled to
save memory (using the keysOnly parameter).

For performance reasons, our algorithm counts the prefix
down to 0 (see section IV on details). Therefore, leaf nodes
contain a prefix of 0, and only in this case the child index
field contains an ID instead of an index to another field in the
nodes array. However, a leaf node will only point to a single
key, leaving one of the two child index fields unused – wasting
28 bits for each key. Consequently, we decided to store the key
IDs one level up (basically, at prefix 1) and reduce all prefix
values by 1. As a result, for a key with k bits, the maximum
prefix value used by our algorithm is only k− 1 instead of k.
Reducing the maximum prefix value by 1 makes a significant
difference – it allows for keys up to 256 bits (a multiple of 8
bits) instead of only 255 bits.

Apart from saving memory space, storing two keys in a
single leaf node has two other significant consequences. The
bad one is that we always need to check the least significant bit
of the key, even if there would not exist a branching otherwise.
Since our priority is saving memory space, we consider this a
reasonable tradeoff. On the other side, the good news is that we
can store twice as many keys with the same number of nodes
in the best case. Best case means that for each key, there is
another key where only the rightmost bit differs. In contrast,
the worst case occurs when for no single key, another key
exists where only the rightmost bit differs. The latter would
be equal to not using this approach.

For performance reasons, our algorithm uses an empty key0
(see fig. 5 and section IV). Therefore, the range of possible
key IDs is 1..228 − 1. As a result, in the best case, TinyTricia

Fig. 7. TinyTricia node structure in Compact Mode (if key length ⩽ 57 bits
and no data fields are required). Keys are stored in leaf nodes; the flags L
and R indicate the existence of a left or right key.

can store up to 268,435,455 (228 − 1) keys in Regular Mode
– doubling the number of keys compared to storing a single
key per leaf node only.

B. Compact Mode

For some use cases, one might not need a data value per key
but prefer to reduce the memory consumption even more. By
disabling the data value storage using the keysOnly parame-
ter), one can save another number of keys ∗ sizeof(value)
bytes. If, in addition to that, the key size is ⩽ 57 bits,
TinyTricia will automatically switch to Compact Mode on
initialization. This mode further reduces the required memory
and doubles the number of possible keys.

In Regular Mode, leaf nodes store IDs in their index
fields, which are the indices to the actual values in both the
keys array as well as the data array. However, with both
no data values required and a key size ⩽ 57 bits, we can
store the keys directly in the leaf nodes instead of any IDs.
Consequently, compared to Regular Mode, Compact Mode
reduces the required memory per key by the size of the key
(in whole bytes).

While a single 28-bit index field would not provide much
space for a key, remember that we always store two adjacent
keys (with only the least significant bit being different) in
a single leaf node. As a result, we can combine the two
index fields into a single key field with 56 bits. Since the two
adjacent keys are identical except for the least significant bit,
we remove the least significant bit and add it again on reading
– 0 for the left key and 1 for the right key. This allows for a
maximum of 57 bits per key in Compact Mode (see fig. 7).
Unfortunately, replacing the two IDs with a key strips us from
the ability to use 0 as an indicator for a non-existent key – 0
is a valid key value, and we store two keys in a single field.
Therefore, we need two additional bits to indicate whether
the key in the field is a valid left or right key. Fortunately, for
keys up to 64 bits (as in this mode), a 6-bit prefix is sufficient,
which which provides us with the two additional bits required.
See listing 1 for how to extract the key from a leaf node.

In the non-leaf nodes, on the other hand, the two gained bits
are used to increase the child index fields by one bit each (29
bits). As a result, the number of total keys doubles compared
to Regular Mode. In Compact Mode, TinyTricia can store up to
536,870,912 (229) keys in the best case; half in the worst case.



def compactKey(nodeValue, isRight):

return ((nodeValue & 0xFFFFFFFFFFFFFF) << 1)

+ isRight # add the lowest bit again

Listing 1: Reading the key from a leaf node in Compact Mode.
isRight may be 0 or 1 and corresponds to bit0 of the key.

Since Compact Mode allows keys up to 57 bits, there might be
a few unused bits left when used with keys of shorter length.
E.g., our use case with 48-bit keys leaves nine bits of the
node empty. As a future improvement, one could allow using
the remaining bits for data values in use cases where a few
bits are sufficient. An example would be boolean flags, e.g.,
whether a service is already deployed or not. Remember that
the remaining bits need to be split between both keys. Thus,
in our use case with nine remaining bits, each of the two keys
could store up to four flags.

IV. PERFORMANCE CONSIDERATIONS

When designing TinyTricia, our primary focus was on
minimal memory consumption. In addition, we also tried to
achieve high search performance by designing our algorithm
and data structures in the best possible way. Among our
performance-focused design decisions are the following:

Empty first items

If-else branchings are costly since they might trip up the
CPU’s branch prediction [13]. A simple trick to get rid of
such a branching is to start each array with an empty item
(node0, key0, and data0). As the most obvious example,
in the search method, this approach avoids checking for an
empty tree. Instead, the root of an empty tree points to node0
– the prefix value of 0 will not enter the loop, and the two
child indices with an ID of 0 point to the non-existent key0.
Since an ID of 0 indicates a non-existing key, it follows that
both key0 and data0 cannot be used for actual keys and
values – thus the empty item in both arrays. Additionally, an
empty child index (pointing to node0) automatically indicates
a non-existing child node.

Inverse prefix

We decided to invert our prefix, contrary to other algorithms
and standard notations. The prefix is usually counted from 1
(left or most significant bit) to the maximum value k (the
key’s bit length; e.g., 32 for an IPv4 address). However, for
our algorithm, it made more sense to count the prefix from
k − 1 down to 0. Consequently, we can compare the stored
prefix value against zero, saving an assembly instruction for
loading the value of k (see listing 2). Furthermore, we get the
current prefix bit of the key with a single bit shift instruction.

V. LIMITATIONS

For best optimization, we developed TinyTricia for our
specific needs. Therefore, TinyTricia is not a general-purpose
Patricia trie, but does have a few limitations.

def search(key):

pos = root

node = nodes[pos]

prefix = node >> 56

while prefix:

pos = ((node >>

(((key >> prefix) & 0x1) * 28))

& 0xFFFFFFF)

node = nodes[pos]

prefix = node >> 56

id = (node >> ((key & 0x1) * 28)) & 0xFFFFFFF

return id if (id and key == getKey(id)) else 0

Listing 2: TinyTricia search method. The prefix is inversed and
goes down from k − 1 to 0. When the tree is empty (Node0
only) or contains a single node (Node1 only), the body of the
while-loop will never be executed.

One significant difference to many other implementations
is that we only consider keys of the same fixed length. As
a result, only leaf nodes contain keys – there are no partial
keys. While the containsFirstNBits() method might
be a satisfactory solution for some use cases, the design is not
targeted toward shorter, partial keys. Furthermore, the algo-
rithm uses integers for the keys; thus, a little-endian machine
is required for the algorithm to work correctly. However, one
could easily fix this with a conversion layer.

While our data structures allow removing a key at runtime
(not implemented yet), reorganizing the arrays can be costly.
Therefore, we suggest only removing the pointer to the key
but not the key itself. If a use case requires frequent deletion
of keys, reorganizing/defragmenting the arrays at specific
intervals helps to keep the memory footprint low.

VI. EVALUATION

For our research on edge/fog computing we deployed a
real testbed named Carinthian Computing Continuum (C3;
see fig. 8) presented in [14]. C3 [15] aggregates a large set
of heterogeneous resources and includes an edge computing
layer. The entry point to the edge layer is the Edge Gateway
System (EGS), a 64-bit x86 system with an AMD Ryzen
Threadripper 2920X (12 cores, 3.5 GHz, 32 GiB memory)
running Ubuntu. The other edge resources are 35 Raspberry
Pi 4B running Raspberry PI OS and five Jetson Nano devices
running Linux for Tegra – all with four cores and 4 GiB of
memory. Additionally, we also include a few Raspberry Pis
4B with only 2 GiB of memory for specific tests.

We designed our algorithm for fast lookup speed, and
performance-critical parts like the search method consist
mainly of a few bitwise operations. While we compared the
search times with similar algorithms like py-radix [16] and
pytricia [17], presenting any comparisons with these C-based
implementations does not make any sense at present, since



Fig. 8. Carinthian Computing Continuum (C3).

our algorithm currently exists only as a Python-based imple-
mentation. There was one significant difference, however, that
we noticed. We tested the implementations up to the maximum
number of keys TinyTricia can handle: half a billion (229) keys.
On our most resource-constrained devices – the Raspberry
Pis with only 2 GiB of memory – both py-radix and pytricia
were killed by the system due to a lack of memory already
when tested with only 16.78 million (224) 32-bit keys. In
contrast, our space-optimized TinyTricia handled the load well.
Remember that for those 16.78 million keys, TinyTricia only
requires between 128 and 256 MiB of memory. Thus, running
it on a device with only 2 GiB of memory was no issue, while
with the two non-space-optimized algorithms, the two 32-bit
child pointers alone require that amount of memory.

Note that, in Compact Mode, our algorithm is particularly
efficient with dense key distributions. This mode stores two
keys that differ only in the rightmost bit (bit 0) in a single leaf
node. Thus, we recommend modifying the used keys to create
a dense distribution where possible. The dense distribution of
keys would not only lead to the least memory consumption,
but the smaller memory footprint would also increase search
performance due to improved processor cache utilization.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented TinyTricia, our space-efficient
implementation of a Patricia Trie for keys up to 256 bits.
TinyTricia is available as open source software [7] and can
keep track of up to half a billion (229) keys up to 57 bits and
up to a quarter of a billion (228-1) keys up to 256 bits with tiny

memory requirements. To achieve these tiny memory require-
ments, our solution uses an array-based approach that allows
using indices instead of memory-intensive pointers. While the
latter would require 32 or 64 bits per pointer (depending on the
hardware architecture), our indices require only 28 or 29 bits
(depending on the mode of operation). As a result, TinyTricia
requires only 8 to 16 bytes per 57-bit key (i.e., only 0 to 8
bytes overhead per key), depending on the distribution of the
keys. Thus, for 16.78 million (224) 57-bit keys, our solution
requires between 128 and 256 MiB of memory. Our algorithm
is particularly memory-efficient when there are many key
pairs with only the least significant bit being different. Unlike
some other space-efficient implementations, TinyTricia allows
adding and removing keys at runtime.

In addition to efficient use of memory, our algorithm is
also designed for high speed. Among other things, higher
performance was achieved by counting down the prefix to zero
(instead of counting up like most algorithms) and reducing the
search loop mainly to a few bit shift operations (see listing 2).
However, although the algorithm is highly optimized, the
Python-based implementation is relatively slow. Therefore, we
already designed our algorithm with a C-based implementation
in mind, which we plan to provide in the future.

REFERENCES

[1] J. Hammer, P. Moll, and H. Hellwagner, “Transparent Access to
5G Edge Computing Services,” in 2019 IEEE Int. Parallel Distrib.
Process. Symp. Work. IEEE, 2019, pp. 895–898. [Online]. Available:
https://ieeexplore.ieee.org/document/8778343/

[2] J. Hammer and H. Hellwagner, “Efficient Transparent Access
to 5G Edge Services,” in 2022 IEEE 8th Int. Conf. Netw.
Softwarization. IEEE, 2022, pp. 91–96. [Online]. Available: https:
//ieeexplore.ieee.org/document/9844066

[3] Open Networking Foundation, “OpenFlow Switch Specification v1.5.1,”
Open Networking Foundation, Tech. Rep., 2015.

[4] “Ryu – Component-Based Software-Defined Networking Framework.”
[Online]. Available: https://ryu-sdn.org/

[5] A. Shirmarz and A. Ghaffari, “Performance issues and solutions in SDN-
based data center: a survey,” J. Supercomput., vol. 76, no. 10, 2020.

[6] R. Sedgewick, Algorithms in C++, 3rd ed. Addison Wesley, 2002.
[7] “TinyTricia: A space-optimized Patricia Trie (v1.0).” [Online].

Available: https://github.com/josefhammer/tinytricia
[8] E. Fredkin, “Trie Memory,” Commun. ACM, vol. 3, no. 9, sep 1960.
[9] D. R. Morrison, “PATRICIA—Practical Algorithm To Retrieve Informa-

tion Coded in Alphanumeric,” J. ACM, vol. 15, no. 4, 1968.
[10] A. Andersson and S. Nilsson, “Improved behaviour of tries by adaptive

branching,” Inf. Process. Lett., vol. 46, no. 6, pp. 295–300, 1993.
[11] S. Nilsson and G. Karlsson, “IP-Address Lookup Using LC-Tries,” IEEE

J. Sel. Areas Commun., vol. 17, no. 6, pp. 1083–1092, 1999.
[12] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,

V. W. Lee, S. A. Brandt, and P. Dubey, “FAST: Fast architecture sensitive
tree search on modern CPUs and GPUs,” Proc. ACM SIGMOD Int. Conf.
Manag. Data, pp. 339–350, 2010.

[13] V. Leis, A. Kemper, and T. Neumann, “The Adaptive Radix Tree:
ARTful Indexing for Main-Memory Databases,” Proc. - Int. Conf. Data
Eng., pp. 38–49, 2013.

[14] D. Kimovski, R. Matha, J. Hammer, N. Mehran, H. Hellwagner,
and R. Prodan, “Cloud, Fog, or Edge: Where to Compute?” IEEE
Internet Comput., vol. 25, no. 4, pp. 30–36, 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9321525/

[15] “The Carinthian Computing Continuum (C³).” [Online]. Available:
https://c3.itec.aau.at/

[16] “py-radix: Radix tree implementation (v0.10.0).” [Online]. Available:
https://pypi.org/project/py-radix/

[17] “pytricia: An efficient IP address storage and lookup module for Python
(v1.0.2).” [Online]. Available: https://pypi.org/project/pytricia/

https://ieeexplore.ieee.org/document/8778343/
https://ieeexplore.ieee.org/document/9844066
https://ieeexplore.ieee.org/document/9844066
https://ryu-sdn.org/
https://github.com/josefhammer/tinytricia
https://ieeexplore.ieee.org/document/9321525/
https://c3.itec.aau.at/
https://pypi.org/project/py-radix/
https://pypi.org/project/pytricia/

	Introduction
	Related Work
	Design
	Regular Mode
	Compact Mode

	Performance Considerations
	Limitations
	Evaluation
	Conclusion and Future Work
	References

