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Abstract—The challenging demands for the next generation
of the Internet of Things have led to a massive increase in
edge computing and network virtualization technologies. One
significant technology is Multi-access Edge Computing (MEC),
a central piece of 5G telecommunication systems. MEC provides
a cloud computing platform at the edge of the radio access
network and is particularly essential to satisfy the challenging
low-latency demands of future applications. Our previous pub-
lications argue that edge computing should be transparent to
clients. We introduced an efficient solution to implement such a
transparent approach, leveraging Software-Defined Networking
(SDN) and virtual IP+port addresses for registered edge services.
Building on our already efficient approach, in this work, we
propose significant improvements to scale our transparent solution
to large-scale real-world access networks. First, by improving
the modularity of our SDN controller design, we enable various
options to distribute both the SDN controller’s load and the
switches’ flows. Second, we introduce the Unique Mask, a solution
superior to the Unique Prefix presented in our previous work
that considerably reduces the number of required flows in the
switches. Our evaluations show that both algorithms perform
very well, with the Unique Mask capable of reducing the number
of flows by up to 98 %.

Index Terms—Multi-Access Edge Computing, MEC, Fog Com-
puting, Software-Defined Networking, SDN

I. INTRODUCTION

The ever-increasing processing and storage demand of the
next generation of Internet of Things (IoT) applications led
to an evolution in distributed computing and initiated the
transition of cloud services closer to the end users [1]. One
promising technology is Multi-access Edge Computing (MEC).
MEC services and convenient access to them are important
building blocks of 5G networks and applications. Particularly
IoT applications can benefit significantly from low-latency
offloading capabilities. Benefits may include lower battery
consumption and easy access to the latest algorithms without
frequently requiring to update the software on the device itself.
Furthermore, these devices may already be deployed without
an economical way to update them.

Therefore, in [2] and [3], we proposed a solution to trans-
parently redirect requests for cloud services to the correspond-
ing services running in local edge hosts (fig. 1). This solution,
based on Software-Defined Networking (SDN) capabilities,
(i) simplifies the development of applications that use edge
computing and (ii) allows existing applications to use edge
computing without any modifications.

While we presented a highly efficient approach to transpar-
ently access edge computing services in our previous work,
we focused on a single centralized controller so far. We
already suggested various options for using a distributed SDN

Fig. 1. Perceived cloud vs. real cloud. All requests/responses look like cloud
accesses to the client (user equipment; UE) – the redirection to the edge is
transparent.

controller in [2], but we have never gone into the details. For
the large-scale real-world access networks, however, a highly
scalable controller design is required that allows for both
the distribution of the required state and improved reliability
in case of a failure of a single controller. Thus, in this
paper, we focus on improving the modularity of our SDN
controller to distribute the components and tasks to multiple
controllers efficiently. Furthermore, we introduce the Unique
Mask, a solution superior to the Unique Prefix presented in
our previous work that significantly reduces the number of
required flows in the switches.

The main contributions of this work are:

• a highly scalable SDN controller design and implementa-
tion for providing transparent access to edge computing
services at a large scale; and

• a fast solution to minimize the number of flows in
the switches that represents a notable improvement over
the Unique Prefix approach presented in our previous
work [3].

The paper has seven sections. First, we provide a short
overview of our approach to transparent access to edge
computing services in section II. Then, we survey the related
work in section III. Afterward, we present the architecture
of our SDN controller in section IV. Section V introduces
the Unique Mask, an improvement over the Unique Prefix
presented in [3]. The corresponding evaluation is shown in
section VI, and section VII concludes the paper.
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Fig. 2. Routing with a registered service address (IP + port): Using OpenFlow
(OF), the request is redirected to the closest edge server, transparent to the
client (UE). For subsequent requests to the same service, the redirection rule
is already known to the switch (gNB); the packet is forwarded directly to the
edge host (and not to the SDN controller anymore).

II. BACKGROUND: TRANSPARENT ACCESS

In our transparent access approach [2], [3], the services to
be redirected to the edge are first registered with a mobile
edge platform provider (fig. 1), identified by their unique
combination of domain name/IP address and port number. The
network (i.e., an SDN switch) intercepts any request from a
client to a registered service and automatically redirects it to
the closest available edge server. The edge service processes
the request and responds to the client (user equipment (UE)
in 5G terms). To achieve transparency toward the clients, our
approach uses the packet filtering and rewriting capabilities of
OpenFlow [4] (see fig. 2). We refer to [2] for a description
of the fundamental solution and to [3] for more details. The
latter paper focuses in particular on the performance aspects
of our approach and presents a prototype implementation of
our SDN controller based on the Ryu framework [5] and an
evaluation of our prototype on a real edge testbed.

III. RELATED WORK

This section reviews existing approaches for transparent
access, scalable SDN controller design, and minimizing the
number of flows in the switches.

Regarding transparent access, we refer to the broad related
work discussion in [2] citing [6]–[8]. These works all focus
on the ETSI MEC Reference Architecture [9] and rely on
OpenFlow [4] for switching the traffic.

Regarding scalable SDN controller design, Alsaeedi et
al. [10], Shirmarz and Ghaffari [11], and Isyaku et al. [12]
provide comprehensive surveys on solutions for adaptive and
scalable flow control in OpenFlow-based SDN networks. They
also emphasize the propagation delay introduced by cen-
tralized SDN controllers in widely separated inter-connected
data centers, which calls for multiple distributed controllers
to improve both scalability and reliability. However, such a
distribution introduces a significant overhead for state syn-
chronization, which leads to scalability concerns [13]–[15].
Our approach addresses these concerns by (i) distributing the
controllers at the network’s edge and (ii) keeping the global
state to be synchronized to a minimum.

Fig. 3. Architecture of our system. If a separate SDN controller is responsible
for the redirection to a specific edge, some components can be skipped on
the main controller.

Several proposals exist to cope with the limited memory for
flow tables in hardware switches. Nguyen et al. [16] provide a
survey on optimal OpenFlow rule placement solutions. Other
works propose solutions to reduce the number of flows; among
them are [17]–[20]. For their discussion, we refer to the related
work in [3]. We also refer to [3] regarding the use of Patricia
Tries for finding the largest subnet that does not include any
key present in the trie [21], [22].

While all these works provide valuable insights and ideas,
none of them targets the specific requirements of our trans-
parent edge approach. In our approach, we deliberately do not
specify the algorithm for switching the default traffic to give
operators the flexibility to choose their preferred algorithm.
Instead, we focus on the algorithm for switching edge-related
traffic. This clear separation of concerns allows us to provide
an optimized solution for switching edge-related traffic by
exploiting the specific requirements for transparent access. For
example, the forwarding flows for a concrete edge server are
a local decision of an edge SDN controller and need not be
known to the global SDN controller, avoiding synchronization
overhead.

IV. ARCHITECTURE

In our previous work [3], we presented a modular architec-
ture for our SDN controller designed for efficient transparent
access. The entire design targeted optimizing the switching
performance for regular, non-edge traffic, which includes
minimizing the number of flows in the switches.

This paper presents an improved version of our architecture
(see fig. 3). In the previous version presented in [3], while
all components operated on a switch-level view, they still had
access to the global system view. With the new version, all
components are bound to a specific switch and no longer
have access to the global network view. We removed the



Fig. 4. One switch, two controllers.

global Context component and moved the specific shared
information to each switch separately. With the improved mod-
ularity of our architecture, we significantly reduced necessary
dependencies between the components. As a result, less global
data needs to be shared, and it has become easier to skip
components not required for a specific switch (see fig. 3).

Thus, in addition to the performance goals mentioned above,
the improved architecture allows the distribution of the work-
load between multiple switches. For high scalability of the
entire system, the distribution is done in a way that allows the
main ingress switch to focus on edge detection and offloads the
edge redirection to other switches. This improved architecture
allows several different scaling options. These options can be
classified into three main groups as follows.

A. One Switch per Ingress, One Controller

The simple default setup uses one switch per ingress and
one central controller – the setup we used in previous papers.
Note that the central controller is usually connected to multiple
ingress switches. While this option is easy to set up, the
central controller becomes the bottleneck and the single point
of failure of the system. On the other hand, using only a single
controller requires fewer redundant controllers to take over in
case of a failure.

B. One Switch per Ingress, Multiple Controllers

The previous setup with only a single controller is hard to
scale to larger networks. One option for scaling is to offload
the edge redirection handling to another SDN controller ded-
icated to edge service traffic. Fig. 4 shows an example with a
single dedicated Edge Controller. Setups in this group include
(i) sharing a single Edge Controller among multiple ingress
switches and (ii) distributing the traffic over multiple Edge
Controllers (sharding). With this solution, the main controller
only needs to run the components necessary to separate edge
traffic from regular traffic – the dedicated Edge Controller
deals with the actual forwarding.

Although the more straightforward solution, options in this
group already allow a more centralized, global core controller
that does not require the necessary knowledge for the local
edge redirection. Furthermore, since this simplifies the core

Fig. 5. Two switches, two controllers.

controller, running redundant instances of the central controller
for improved resiliency becomes much more manageable –
less state in the core controller means less to synchronize with
the redundant controllers.

However, this setup implies that the switch needs to connect
to both controllers to send all OpenFlow PacketIn messages
to both controllers. Depending on the number of PacketIn
messages, this might increase the traffic overhead significantly.

C. Multiple Switches per Ingress, Multiple Controllers

Another scaling option is to distribute the logic among
multiple SDN controllers and the flows among two or more
switches (see fig. 5). This solution builds on the previous
one and significantly reduces the number of flows per switch.
While we could achieve this using established sharding meth-
ods, our architecture’s filter stages allow us to be more specific
and move most edge service-related flows away from the main
switch. Thus, the main switch can keep more flows for regular
traffic in its fast ternary content-addressable memory (TCAM),
speeding up the forwarding.

As presented in [3], our architecture utilizes four filter stages
to reduce the number of flows and to improve efficiency: (1)
Pre-Selection, (2) Edge Detection, (3) Edge Redirection, and
(4) Default Forwarding. Each filter stage maps to a separate
switch flow table. The Edge Detection stage separates regular
traffic from edge-related traffic and thus needs to be present
in the main switch. However, this design allows us to move
the Edge Redirection stage with all edge redirection flows to
a different switch. Since these flows modify packet headers in
both directions (fig. 2), this stage contains twice as many edge
service-related flows as the Edge Detection stage.

Compared to the previous scaling option, this approach
reduces the traffic overhead caused by the PacketIn mes-
sages. Since the main ingress switch does not hold any edge
redirection flows anymore, it does not need to connect to the
Edge Controller anymore – only the dedicated edge switch
needs to connect to the Edge Controller. As a result, the
Edge Controller will only receive PacketIn messages for
edge service traffic – and not for regular traffic. Note that the
edge switches may also be used to switch regular (internal)
traffic – we only move them away from the critical ingress



Fig. 6. We use a Patricia Trie to search for registered virtual addresses and to calculate the Unique Prefix (shown above). By additionally using all parent
prefixes (8 only in this simple example trie) to generate the IP mask for the switch flow, we get the Unique Mask (see fig. 7).

traffic. In such a case, the Edge Controller needs to run all
the components – i.e., including the EdgeDetector – to be able
to distinguish between regular and edge-related traffic.

V. UNIQUE MASK

For transparent access to edge computing services, we
cannot only use switching at OSI layer 2 (using the MAC
addresses) since we need to detect and redirect requests to
registered edge services [2]. Therefore, in the worst case,
we would need a separate flow in the switches for each
destination address requested by a client. However, minimizing
the number of flows is essential for the best utilization of the
high-speed and expensive ternary content-addressable memory
(TCAM) often used for the flow tables in hardware switches
[11]. Therefore, in our previous work [3], we presented several
strategies to minimize the number of flows, including matching
with Unique Prefixes.

The Unique Prefix (fig. 6) provides an efficient way to
minimize the number of flows required in the switches. It
utilizes flows with prefix wildcards to match IP addresses
for regular traffic. Depending on the specific IP addresses
involved, using the Unique Prefix already significantly reduces
both the number of flows necessary for regular IP addresses
and the number of PacketIn messages to the controller.

Consider a request coming in, headed towards 100.0.0.1.
A typical flow would match only this single destination IP
address. However, if we would add, e.g., the prefix 25 to the
address – 100.0.0.1/25 – this would create a netmask
that matches not only one but many potential destination IPs.
With a single flow, we would match not only 100.0.0.1 but
also any other IP address with the same first 25 bits, i.e., all
addresses in the range 100.0.0.0 – 100.0.0.127. As a
result, compared to a flow without our Unique Prefix, we can
match many regular IP addresses instead of just a single one –

Fig. 7. Unique Prefix vs. Unique Mask. Both lead to a significant reduction
in the number of flows by capturing many addresses with a single flow.

in the example above, 128 addresses (see fig. 7). Thus, using
our Unique Prefix leads to a massive reduction in the number
of flows. Furthermore, it also reduces the number of requests
to our SDN controller, speeding up and reducing the load of
the entire system. Should a client request another IP address
within that range, the switch will not bother our controller
anymore and will go straight to the default forwarding table.

However, we can do even better by exploiting more infor-
mation from our Patricia Trie. The OpenFlow Switch Spec-



Fig. 8. The topology used for the evaluation. The SDN controller, the virtual
OVS switch, and the cluster for the edge services run on the Edge Gateway
Server (EGS). The client applications run on 20 Raspberry Pi 4B.

ification [4] does not only allow prefix wildcard definitions
(i.e., subnet masks) but also arbitrary bitmasks. These bitmasks
allow wildcard bits to be set anywhere in the address, enabling
much more powerful pattern matching. We use these bitmasks
to create flows that match even more addresses with only
a single flow. When we look at our tiny tree in fig. 6, we
notice that there cannot be any key between the one we are
comparing with (100.0.0.255) and its parent prefix node
(bit 8). Consequently, all the bits between the parent prefix
(bit 8) and the Unique Prefix (bit 25) also do not matter. If,
starting from bit 9, only the Unique Prefix bit 25 matches,
we can already guarantee that our flow will not match any of
our registered virtual IP addresses.

Going one step further, if we only match all parent prefixes
of 100.0.0.255 as well as the Unique Prefix, our flow still
will not match any of the addresses registered in our tree. Thus,
only bits 8 and 25 must match in this example. Fig. 7 shows
the two different bitmasks used for Unique Prefix matching
(top) vs. Unique Mask matching (bottom). The difference in
the number of potential regular IP addresses matched can be
enormous, as shown in this example.

In our actual controller, we search not only for an IP address
but also for the port number. It could happen that we do find
the requested IP address in our tree, but the port number does
not match. In such a case, our flow needs to be more restrictive,
not less – it must match not only the exact IP address but also
the exact port number. Thus, requests to virtual IP addresses
always include the port number in the flow.

VI. EVALUATION

For the evaluation, we used the same setup as described
in [3] – our Carinthian Computing Continuum (C3) testbed
presented in [1]. C3 aggregates a large set of heterogeneous
resources and includes an edge computing layer. The entry
point to the edge layer is the Edge Gateway Server (EGS), a
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Fig. 9. Distribution of the 269,616 TCP/UDP requests from 99 private IPv4
addresses to 1,595 public IPv4 addresses over the 300-second network trace.

64-bit x86 system with an AMD Ryzen Threadripper 2920X
(12 cores, 3.5 GHz, 32 GiB memory) running Ubuntu 18.04.
The other edge resources are 35 Raspberry Pi 4B running
Raspberry PI OS (Buster) and five Jetson Nano devices – all
with four cores and 4 GiB of memory. The EGS supports 10
Gbps Ethernet; the other nodes utilize 1 Gbps Ethernet. A
layer-3 HP Aruba switch with 1 Gbps ports with a latency
of 3.8 µs and an aggregate data transfer rate of 104 Gbps
connects the devices. On top of this system, we use an
overlay network that forms a virtual emulation network for
our experiments, with the Open vSwitch (OVS) [23] virtual
switch running on the EGS (fig. 8).

A. Unique Mask

In theory, both Unique Prefix and Unique Mask lead to a
significant reduction of flows. However, we wanted to test
how well they perform with real-world traffic. To evaluate
the effectiveness of both Unique Prefix and Unique Mask, we
used a dataset provided at [24] by the Tcpreplay [25] tool. The
bigFlows.pcap [26] dataset is a “5-minute capture of real
network traffic on a busy private network’s access point to the
Internet” and designed to be “useful for testing performance
of switches and network adapters.”

The dataset contains 791,615 packets from 132 different
applications. Due to our performance optimizations presented
in [3], both network-internal traffic and responses from public
IP addresses do not affect the number of flows generated by
our SDN controller. Thus, we are only interested in requests
from private IP addresses to public IP addresses. Out of the
total packets in the dataset, there are 269,616 requests from
99 private IPv4 addresses to 1,595 public IPv4 addresses.
Fig. 9 shows the distribution of these requests during the 300
seconds. However, since we use five or 20 seconds for the flow
idle timeouts, whether we send multiple requests per second
or only a few of them does not make a difference. Thus, for
identical consecutive 5-tuple requests, we send only one per
second, resulting in 55,529 requests.

Remember that our architecture uses a layered design with
four filter stages [3], and regular traffic is forwarded by the
Edge Detector to the Default Forwarder (fig. 3). Since these
flows do not contain the client’s IP address, the number
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Fig. 10. Number of concurrent flows (median) in the switch when replaying
requests from a five-minute real-world network traffic capture with an idle
flow timeout of 5 seconds. The capture contains 269,616 requests to 1,595
public IP addresses. The service IP addresses are distributed within a specific
number of Class B (/16) subnets. All service IPs and subnets were generated
randomly. The median prefixes are 23, 21, 12, 9, 10, and 7 (from left to right).
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Fig. 11. Like fig. 10 but with an idle flow timeout of 20 seconds.

of clients does not affect the number of flows generated.
Thus, we distributed the 99 clients available in the dataset
on only 20 Raspberry Pis. The 99 Scapy-based [27] client
applications send their requests with correct timing according
to the timestamps from the dataset, and the SDN controller
sets up the flows with a five- or 20-second idle timeout.
To read the number of concurrent flows, we used OVS’s
dump-aggregate command once per second. Out of the
total 300 seconds where requests were sent, we used only 290
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Fig. 12. Number of concurrent flows (median) in the switch when replaying
requests with an idle flow timeout of 5 seconds. The traffic capture used is the
same as in fig. 10; however, this time, the service IP addresses are distributed
within a specific number of real-world subnets used by AWS/Azure/GCP. All
service IPs and subnets were selected randomly. The median prefixes are 13,
13, 13, 10, 9, and 5 (from left to right).
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Fig. 13. Like fig. 12 but with an idle flow timeout of 20 seconds.

seconds for the evaluation to eliminate bias from the lower
number of flows during the ramp-up phase.

Fig. 10 and fig. 11 show the number of concurrent flows
(median) in the switch when replaying the requests from
the dataset with a five- and 20-second idle flow timeout,
respectively. The total number of service IP addresses available
in the Patricia Trie significantly affects the effectiveness of
both Unique Prefix and Unique Mask; thus, we tested with
different numbers of service IPs. Since we assume that a few



big data center providers will host most virtual service IP
addresses, we randomly distributed the service IP addresses
within 100 Class B (/16) subnets. Additionally, we added
tests with all 65,536 possible /16 subnets included, tests with
1,000 /16 subnets, and tests using only ten /16 subnets. All
service IPs and subnets were generated randomly. Note that
we use service IP addresses only; i.e., we always use the same
port since both Unique Prefix and Unique Mask work on the
IP address level only. Using different ports with the same IP
addresses for multiple services can multiply the number of
services without affecting the numbers shown here.

Frankly, the results from these tests were surprising. While,
in theory, the Unique Mask should be far superior to the
Unique Prefix, it performed only slightly better: around 10 %,
up to 20 % at best. However, this is partly due to the
excellent performance of the Unique Prefix. Both algorithms
significantly reduce the number of concurrent flows – between
40 % and almost 98 %. A closer look at the prefixes
calculated by the SDN controller reveals the reason for the
small difference between the two. The median prefixes derived
from the test sets are surprisingly low: 23, 21, 12, 9, 10, and
7, respectively. The lower the prefix, the bigger the range of
covered IP addresses, the smaller the room for improvement
for the Unique Mask.

As expected, the effectiveness decreases with the number
of service IP addresses in the Patricia Trie. When the trie is
fuller, the subnets that do not contain any service IP address
(as derived by applying the Unique Prefix/Mask) inevitably
become smaller, matching fewer public IP addresses. However,
the most crucial factor is not the number of service IP
addresses but the number of Class B (/16)-subnets containing
these service IPs. With 100 /16-subnets, we see around 85 %
reduction – regardless of whether we use 1 million (106) or
only 100 (102) service IP addresses. In fact, 100, 000 ad-
dresses in 10 /16-subnets lead to better results than only
100 addresses in 100 subnets. On the other hand, when we
distribute 1 million service IPs among all 65, 536 possible
/16-subnets, the reduction rate decreases to about 50 % and
about 42 % with 5 million addresses. Still, even a reduction
rate of only 50 % is a significant improvement over using
neither Unique Prefix nor Unique Mask, i.e., setting up flows
with an exact match for each public IP address in use.

Not at all surprising is the influence of the two different
idle flow timeouts - five and 20 seconds, respectively. When
timeouts are shorter, the switch removes idle flows earlier
– leading to lower overall flow counts. As a result, lower
timeouts slightly reduce the effectiveness of both Unique
Prefix and Unique Mask. However, lower timeouts come at the
price of a higher number of requests to the SDN controller. In
our tests, the controller created about 30 % to 40 % more flows
when using the shorter five-second idle timeouts compared to
the longer 20-second timeouts.

To double-check our results, we decided to use real-world
subnets used by three big cloud computing platforms (at the
time of writing): Amazon AWS [28], Microsoft Azure [29], and
Google Cloud Platform (GCP) [30]. We limited the selection
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the 300-second network trace with an idle flow timeout of five seconds.

to 13,028 subnets that can host at least 256 addresses (/24
or lower) and chose random sets containing 10,000, 1,000,
100, and 10 subnets, respectively. Please note that these set
sizes differ from those in the Class B-subnets figures. First,
from only 13,028 subnets, we cannot randomly choose 65,536
subnets. Second, with a median size of /23, the smaller
subnets cannot contain high numbers of IP addresses. Finally,
we deliberately present set sizes in the figures that best
highlight the tipping points.

Since these subnets are smaller than the /16-subnets used
in fig. 11, the performances of both Unique Prefix and Unique
Mask are even better. Fig. 12 and fig. 13 show that even
with 5 million service IP addresses, we achieve an 80 % and
70 % reduction in the number of concurrent flows, depending
on the idle flow timeout. With 1 million service IPs in 100
AWS/Azure/GCP subnets, we have less than half the number
of flows than with the same number of IPs in 100 /16-
subnets. Also, we see that the number of flows remains stable
when the number of subnets increases from 1,000 to 10,000.
This is reflected by the low median prefixes: 13, 13, 13, 10,
9, and 5. In conclusion, we recommend grouping service IP
addresses into only a few /16-subnets or grouping them into
smaller subnets. This approach allows the best results when
using either Unique Prefix or Unique Mask for reducing the
number of concurrent flows in the switches.

B. Distributing the Flows

The third scaling option presented in section IV allows to
distribute the flows among two or more switches by moving
most edge service-related flows away from the main switch
(see fig. 5). In our system, requests to an edge service require
three flows per client. Of these three flows, our architecture’s
filter stages allow moving two to a different switch – the Edge
Redirection Flows. The remaining third, the Edge Detection
Flows, must stay on the main switch. To get a perspective
about actual numbers, we also ran tests to measure the number
of flows required for the network trace used in the previous
subsection. However, this network trace neither knows about
edge services nor includes requests to these. Therefore, we
selected a subset of the available destination addresses as edge



service addresses. First, we used Wireshark [31] to extract all
22,312 TCP Conversations from the raw network trace. Then,
we filtered for requests going to destination addresses with
the target port 80 (HTTP). These 4,610 requests (21 % of the
entire trace) from 74 clients resulted in 899 unique destination
IP + port combinations, which we configured as edge service
addresses in our SDN controller.

Fig. 14 shows the number of edge service-related flows over
time when replaying the network trace. For this test, we used
an idle flow timeout of five seconds. Without using the third
scaling option, both the Edge Detection Flows and the Edge
Redirection Flows are present in the main switch. With the
third scaling option, we move the latter (two-thirds of the
flows) to a different, dedicated edge switch. This separation
would remove almost 300 flows from the main switch at the
peak, given the selected network trace and edge services.

VII. CONCLUSION

In our previous publications [2], [3], we highlighted the
multiple benefits of transparent access to edge computing
services. Furthermore, we presented how to implement such
a transparent approach efficiently. Building on our already
efficient approach from these two papers, in this work, we
proposed the Unique Mask as an effective improvement for
further reducing the number of flows in the switches. Our
evaluations show that both Unique Prefix and Unique Mask
can reduce the number of flows by 40 % to up to 98 %,
with the Unique Mask being about 10 % more effective.
Thus, the Unique Mask is a crucial element for the best
utilization of the high-speed and expensive ternary content-
addressable memory (TCAM) used in hardware switches.
Furthermore, our results show that using fewer subnets for the
service IP addresses significantly improves the effectiveness
of both algorithms. Additionally, we significantly improved
our SDN controller’s modular architecture to enhance our
system’s scalability and presented two different scaling options
for large-scale networks.
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