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Abstract—The challenging demands for the next generation of
the Internet of Things have led to a massive increase in edge
computing and network virtualization technologies. While there
is vast potential for research in these areas, managing complex
adaptive infrastructure is difficult, and experiments with real
hardware are tedious to set up. Furthermore, proposed solutions
often require expensive hardware or labor-intensive procedures
to replicate and build on these ideas. With our C3-Edge testbed,
we address these challenges and propose a novel approach for
automated edge testbed setup with a low-cost software-defined
network and adaptive infrastructure configuration. We validated
the efficiency of our approach on a real-world computing
continuum infrastructure. The evaluation results confirm that
our flexible approach is suitable for all but the most bandwidth-
intensive applications.

Index Terms—Edge Computing, MEC, Fog Computing, IoT,
Software-Defined Networking, SDN, OVS, OpenFlow, Testbed,
Raspberry Pi, Nvidia Jetson, Emulation, Virtualization

I. INTRODUCTION

The ever-increasing processing and storage demand of the
next generation of Internet of Things (IoT) applications led
to an evolution in distributed computing and initiated the
transition of the cloud services closer to the end users [1].
The trend was enabled by the introduction of novel computing
paradigms, such as edge computing and network virtualization
technologies, including software-defined networks (SDNs).
Most modern applications benefit highly from the low-latency
communication characteristics of edge computing and the
flexibility of virtualized networks.

Unfortunately, it becomes increasingly difficult to efficiently
manage complex adaptive infrastructures while providing the
IoT applications with the lowest possible execution time [2],
[3]. Thus, the transition of IoT applications from the cloud
to the edge opened new critical research challenges, including
increased heterogeneity of resources and network technolo-
gies. However, experiments with real hardware are tedious
to set up, and proposed solutions often require expensive
hardware or labor-intensive procedures to replicate and build
on these ideas. We address these challenges by proposing a
novel approach for edge testbed setup with a low-cost SDN
network and adaptive infrastructure configuration.

First, our proposed solution utilizes inexpensive single-
board computers to provide easily replicable performance
results and high flexibility with the software setup (fig. 1).
For example, we run a Kubernetes cluster on the testbed for
experiments. Apart from the ubiquitous Raspberry Pis, we

Fig. 1. High-level overview of the C3-Edge test infrastructure. As hosts
(named hi in the above emulation network topology), the virtualized emulation
network uses a large number of Raspberry Pi and Nvidia Jetson Nano devices.
Depending on the desired network topology, the hosts connect via multiple
virtualized OpenFlow switches (si) – the latter run on the gateway.

added a few Jetson Nanos for machine learning experiments
utilizing the GPU (such as in [4]). An automated setup enables
quick replication of our testbed.

Second, our solution provides an optional, VLAN-based
emulation overlay network for software-defined networking
experiments. Most low-cost SDN testbeds utilize USB-based
network adapters. Our novel approach uses VLANs instead to
(i) avoid attaching a large number of adapters and (ii) enable
more than five ports per virtual (OVS) switch.

Third, as an alternative to our custom configuration, our
solution can parse the definition files of existing Mininet [5]
network topologies and use them for the emulation network
definition.

The main contributions of this work are:
• automated setup of edge infrastructure over single-board

computers, such as Raspberry Pis and Jetson Nanos;
• a low-cost and flexible overlay network with automated

setup for software-defined networking experiments;
• both large-scale and portable edge testbed systems for

different usage applications;
• an empirical analysis of the network performance of the

deployed edge testbed; and
• we open-sourced C3-Edge under the liberal MIT license

on GitHub [6].

https://orcid.org/0000-0002-8066-4768
https://orcid.org/0000-0001-5933-3246
https://orcid.org/0000-0002-7952-4717
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0003-1114-2584


II. RELATED WORK

To begin, we address the work by Lantz et al. [5] for
setting up an SDN test environment – the well-known Mininet.
It allows rapid prototyping of SDN solutions on a single
machine. However, since all the virtualized hosts run on a
single physical host, a distinct software setup for the em-
ulated hosts becomes challenging. This shortcoming led to
the development of Containernet by Peuster et al. [7]–[9],
which allows using containers and Virtual Machines as hosts.
Nevertheless, getting precise performance values from these
virtualized hosts is difficult since all hosts are running on a
single machine, sharing their processing power. Furthermore,
for edge/fog computing and IoT experiments, we require direct
support for interfacing external sensors and actuators.

Due to their low cost per unit, Raspberry Pi devices are
popular among researchers. Kim et al. [10], Han et al. [11],
Ariman et al. [12], and most recently Toosi et al. [13] proposed
testbeds for SDN research built on Raspberry Pis as Open-
Flow [14] switches. Out-of-the-box, the Raspberry Pi pos-
sesses only a single Ethernet interface. All these approaches
add additional USB-based network adapters to increase the
number of network interfaces. Then Open vSwitch [15] is
run on the Raspberry Pis to enable software-based switching
between these interfaces. See section III for the disadvantages.

The work by Rainer et al. [16] does not add additional
network interfaces and bases their Named Data Networking
(NDN) testbed on Banana Pi switches, which come with five
native Ethernet interfaces out-of-the-box. However, Banana
Pis are less popular than Raspberry Pis and thus less readily
available and with less (community) support. Another afford-
able option is the Zodiac FX [17]–[20]. The Zodiac FX is
an OpenFlow SDN hardware switch comprising four Ethernet
ports. However, all ports are limited to 100 Mbps.

Sørensen et al. [21] described all the steps for setting up a
Raspberry Pi-based testbed for network coding experiments.
Their approach is to set up and configure the SD card image
file and flash the final image for each node. For future updates,
however, flashing all the SD cards again from a modified
image file is a manual, labor-intensive task. Thus, our approach
is to deploy only an original base image to each node and
remotely customize all nodes fully automatedly. If it should
be necessary to switch to a new clean base image provided
by a vendor, it is easier with our approach since all the
customizations are automated. More importantly, it makes it
easy to quickly apply changes and updates without physically
accessing the testbed. Furthermore, we may use the same
mechanism to set up the devices for specific experiments.

Bellavista and Zanni [22] already showed the feasibility of a
containerized approach on Raspberry Pis, and Fahs and Pierre
[23] ran Kubernetes on these small devices. Most recently,
Mahmud and Toosi [24] proposed a framework for a dis-
tributed container-based edge and fog computing environment
on Raspberry Pis. These and other publications [25], [26] show
that tiny, affordable computers like a Raspberry Pi are capable
enough for real-world use cases.

III. ARCHITECTURE

A. Physical Network
As presented in [1], our Carinthian Computing Continuum

(C3) [27] testbed contains cloud, fog, and edge resources. In
the remainder of this paper, we usually refer only to the edge
computing layer (C3-Edge) when talking about “the testbed”.

Fig. 2 shows the detailed architecture of the testbed infras-
tructure. Each device is connected with a single CAT6A cable.

In some instances, having a “private” test system can be
beneficial, e.g., to test new settings without interfering with the
colleagues’ work. For such cases, we also developed a smaller
version of the C3-Edge testbed – the Portable Test System [28].
One can easily transport it between different workplaces and
connect to it locally, either by cable or wirelessly.

B. Virtual Emulation Network
For many experiments, the testbed with its physical network

is already sufficient. For example, for [4], we run a Kubernetes
cluster on the testbed. However, for our research [29], [30],
we wanted a flexible, programmable emulation network based
on the Raspberry Pis as hosts. Thus, we decided to design
an overlay network on top of the physical network presented
in the previous section. The overlay network should be able
to form any desired topology and require as little hardware
as possible. As we noted in section II, the usual approach
to set up a software-defined network based on Raspberry Pis
is to add USB-Ethernet adapters to add additional network
interfaces. This approach has several disadvantages, however.
First, it comes at additional costs for the Ethernet adapters
and complicates the hardware setup. Second, such a switch
can only have up to five ports without using an external USB
hub. Furthermore, unlike the physical Ethernet interface on the
Raspberry Pi 4B, only USB-based Ethernet interfaces on the
two USB 3.0 ports could operate at 1 Gbps, while the two
USB 2.0 ports share a single USB 2.0 hub internally [31].

With the goal of a more flexible network setup, we propose
a different solution. Instead of using a fraction of our nodes as
switches, we run all instances of OVS on the gateway machine.
As a result, our emulation utilizes a virtually unlimited number
of switches with a vast number of ports. To force all physical
nodes to connect via the virtual switches instead of commu-
nicating directly with their peers, we use multiple VLANs, as
shown in fig. 2. All nodes participate in the default (untagged)
VLAN 1 that forms the management network. In addition, for
the emulation network, each node is part of another (tagged)
VLAN that contains only the node itself and the gateway.

While these tiny VLANs do not make much sense by
themselves, they enable us to add specific nodes to our virtual
(OVS) switches. Therefore, as presented in fig. 2, we can
group arbitrary nodes to form a virtual network. As soon as we
point the participating nodes’ default route to the emulation
network, this setup forces the nodes to communicate via the
virtual switches. As an additional measure, we block outgoing
traffic from participating nodes via the management network
whenever an emulation network is active. Incoming traffic
needs to stay allowed, though, to allow reverting the settings.



Fig. 2. The architecture of our test infrastructure. For the optional virtual emulation networks, each node has its separate VLAN. Depending on the desired
emulation network topology, the VLANs are connected to multiple OpenFlow switches (si; running on the gateway). Whenever an emulation network is active,
outgoing traffic from participating nodes via the management network is blocked, forcing the nodes to communicate via the virtual switches only.

IV. SETTING UP THE TEST INFRASTRUCTURE

As discussed in section II, several publications have already
described setting up a Raspberry Pi-based test system. How-
ever, one essential issue is the unnecessarily large number of
manual steps required. While we see an immense value in the
various steps and the reasoning behind them well explained,
we believe in the core values of the Agile Manifesto [32],
one of them being “working software over comprehensive
documentation”. Thus, when setting up the test infrastructure,
our goal was to minimize the number of steps needed. See [6]
for instructions on how to set up the testbed.

Once the testbed is set up, we can run many different
emulation network topologies on top of it. Setting up a new
emulation network topology is a two-step process: (i) defining
the topology specification and (ii) activating the topology. See
[30] for a simple example topology. The fastest and most
effortless way to start is with an existing Mininet definition of
the emulation network topology. MiniEdit comes with Mininet
and is used for visually defining an SDN network topology,
which it saves as a MiniEdit Topology (*.mn) file. We can
use this file for the setup.

If an existing Mininet definition is unavailable, the second
option to define a topology is a YAML [33] file with a C3-

Edge emulation definition. The command c3 [--clean]
topo1 sets/cleans up the emulation network defined in
[topo1/]topo1.(yml|mn). See our repository [6] for
topology definition examples and more details. If one decides
to use the YAML file to define the emulation network topology
but later would like to use that topology with Mininet, we
provide a converter. The converter will take the YAML file and
produce both a MiniEdit topology file and a Mininet script.

V. EVALUATION

To evaluate the performance of the test infrastructure, we
created two evaluation scenarios encompassing (i) direct con-
nections and (ii) connections via the emulation network. For
the first evaluation scenario, we involve two nodes and the
hardware switch. In the latter scenario, all requests must go
from the node via the hardware switch to the gateway and
via the virtual OVS switch to the destination node. Unless the
destination node is the gateway, this means going back from
the gateway via the hardware switch to the node. As a result,
the connection between the switch and the gateway becomes a
potential bottleneck of the emulation system. All experiments
were performed using Raspberry Pis (RPi) as nodes.
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Fig. 3. Total throughput in Mbps between a Raspberry Pi and the EGS
gateway or another Raspberry Pi. For the parallel tests, we ran iperf3 on
two and three independent pairs of Raspberry Pis simultaneously.

First, we measured the effective throughput of the system
using the tool iPerf3 [34] with its default settings. Fig. 3
presents the results of four different setups, each one using
both direct access and the virtual emulation network. The
first two setups test node-to-gateway communication (RPi-
Gateway) and node-to-node communication (RPi-RPi). The
latter two measure the total throughput with either two (2x
parallel) or three (3x parallel) simultaneous node-to-node
communications. As expected, we see no difference for node-
to-gateway connections. However, we see a significant drop in
throughput for the node-to-node connections. This drop is due
to the overhead of routing every packet via the virtual switch
on the gateway. The experiments with parallel connections
show a much more significant difference. For these parallel
tests, we avoid overlap between the nodes, i.e., we involve four
and six RPis, respectively. Thus, with the direct connections,
the only limitation is the hardware switch. As a result, the
measured throughput almost doubles/triples. With the emula-
tion, on the other hand, the upper limit is the bandwidth of the
connection to the gateway. This bandwidth is shared equally
between the two/three pairs. On a positive note, we see the
total utilization of the connection increasing and converging
to the link’s maximum capacity. Furthermore, keep in mind
that for realistic emulation networks, we frequently limit the
bandwidth of links between nodes to lower values.

The latency, on the other hand, is not impacted by the
bandwidth of the single connection. However, the routing via
the gateway does increase the average round-trip time by 60 %
(fig. 4). Nevertheless, the average latency we measured was
still below one-third of a millisecond.

VI. DISCUSSION

Our test system is highly flexible and allows quickly setting
up any network topology. The usual approaches, discussed in
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Fig. 4. Average round-trip time in ms between a Raspberry Pi and the EGS
gateway or another Raspberry Pi. Measured with ping -c 20.

section II, require multiple devices operating as OpenFlow-
capable switches – either running OVS or a dedicated hard-
ware switch. In contrast, our system allows running all virtual
switches on a single gateway node. Furthermore, the single
network cable to each node vastly simplifies the hardware
setup and lowers the total cost of the test system.

These advantages come at a price, however. With the current
setup, all traffic needs to go through the gateway. As a result,
the network connection between the switch and the gateway
becomes a potential bottleneck of the system. Depending on
the link’s capacity between the switch and the gateway, this po-
tential bottleneck might be relevant for use cases where many
nodes require high bandwidth simultaneously. If, on the other
hand, the experiments are focused on low latency and routing
questions or have few nodes transmitting simultaneously, this
convenient setup should be satisfactory.

There are several ways to mitigate this limitation. One is
adding further network interface cards to the gateway and
bonding several links to the switch to multiply the bandwidth.
Another option would be to use one or more 10+Gbps ports on
a switch (e.g., SFP+ ports) to connect to the gateway. However,
these two options would come at additional costs. One of the
free options would be to set up some of the virtual switches not
on the gateway but on nodes instead. Furthermore, nodes could
be allowed to communicate with each other directly when no
OpenFlow control over their traffic is required (by adding the
respective VLAN interfaces to each node). An example would
be combining nodes to form a Kubernetes cluster.

VII. CONCLUSION

We introduced a novel automated approach for deploying
both a large-scale and a portable edge testbed using SDN vir-
tualization over Raspberry Pi and Nvidia Jetson Nano devices.
The evaluation results confirm that our flexible approach is
suitable for all but the most bandwidth-intensive applications.
Due to the low costs and the high degree of automation, our
solution enables easy repeatability and replicability of single-
board computer and software-defined networking experiments.
C3-Edge is available on GitHub (liberal MIT license) [6].
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