
Transparent Access to 5G Edge Computing Services
Josef Hammer, Philipp Moll, Hermann Hellwagner

Institute of Information Technology
Alpen-Adria-Universität Klagenfurt

Klagenfurt, Austria
{firstname}.{lastname}@aau.at

Abstract—The upcoming 5G telecommunication system is ex-
pected to provide high data rates and ultra-low latency to meet
the challenging demands of future applications. Multi-access Edge
Computing (MEC) is a central piece of the solution by providing
a cloud computing platform at the edge of the radio access
network. In this paper, we argue that edge computing should be
invisible to clients and should not require modifications in client
applications. A prototype shows how requests to cloud services
can be transparently redirected to the closest edge computing host
by leveraging Software-Defined Networking, while still allowing
to use the cloud as a fallback. In addition, we discuss how to
scale our approach for large networks.

Index Terms—5G, Multi-Access Edge Computing, MEC, SDN,
Software-Defined Networking

I. INTRODUCTION

Future applications for UAVs, driverless cars, the Industrial
Internet, and the Internet of Things (IoT) will demand high
bandwidth, high resilience, and/or low latency communication.
To meet these requirements, the upcoming 5G communication
system will not only facilitate an advanced air interface but
also introduce new concepts in the core network – Software-
Defined Networking (SDN), Network Function Virtualization
(NFV), and, most prominently, Multi-access Edge Computing
(MEC) [1]. MEC is similar to cloud computing, but happens
at the edge of the network, i.e., near the base stations (in 5G
terms: gNB; next generation NodeB), and thus is much closer
to the client than a conventional cloud server (fig. 1).

The basic idea of distributing processing power at the
network edge is also known as edge clouds, cloudlets, and fog
computing [2], [3]. Edge Computing is part of a paradigm shift
from the current service-agnostic store-and-forward approach
towards an intelligent network. Running applications at the
edge of the network enables low-latency services but comes at
the cost of complexity. In contrast to applications in the cloud,

Fig. 1. Edge computing happens near the base station (and the client).

edge applications require advanced location and migration
techniques that facilitate both quick and frequent migrations
from one edge node to another to support client, i.e., user
equipment (UE), mobility. Furthermore, to allow for IoT de-
vices with low processing power, the required intelligence and
overhead on the client side must be minimized. Consequently,
the intelligence should be moved into the network itself.

The aim of our work is to make edge computing transparent
for the UE. The motivation for this goal is twofold: (i) simplify
the development of applications that use edge computing and
(ii) allow existing applications to use edge computing without
any modifications. Just as today’s Content Delivery Networks
(CDNs) do not require changes to client-side applications such
as Internet browsers, edge computing should be invisible to
clients. Moreover, the closest edge computing node should
be found without querying centralized servers that have the
knowledge about the infrastructure.

As an example, consider proprietary sensor networks and
surveillance cameras. Instead of uploading all their data to a
central server, a much better solution might be to aggregate
and filter the data at the edge already. However, those devices
might have been built before the era of edge computing,
and firmware/software updates might be unreasonable or even
impossible. Nevertheless, we want them to benefit from future
edge processing capabilities.

Our core idea is to register existing domain names (together
with a service port) with mobile edge platform providers. Our
system then transparently redirects requests to these cloud
services to the corresponding services running in the local
edge hosts. If a cloud service is not registered with a given
edge platform provider, the original cloud service would be
used as a fallback. A prototype was implemented as a module
for the OpenFlow POX SDN controller1, running in a Mininet2

testbed. Additionally, we present several ideas to improve the
performance and scalability of such a system.

II. RELATED WORK

Currently, a lot of research is being conducted to solve the
challenges mentioned above. However, so far there are few
clear answers and very little is standardized. One area that
is particularly lacking is how to address edge services. There
is no efficient, standardized naming system for locating edge-
computing devices and applications running on them [4]. Such

1https://github.com/noxrepo/pox/, last accessed: 2019-03-19
2http://mininet.org/, last accessed: 2019-03-19

https://github.com/noxrepo/pox/
http://mininet.org/


a naming system would have to handle device mobility, a
highly dynamic network topology, privacy and security, while
also enabling scalability [5]. Solutions focusing on IoT often
follow a centralized approach. Popular frameworks in this area
are AWS IoT Greengrass3, Google Cloud IoT4, and Microsoft
Azure IoT Edge5. These solutions have in common that the
developers need to provide their own edge computing nodes,
as opposed to utilizing the edge nodes provided by the MEC
systems of 5G network operators. In general, most proposals
favor a solution using SDN and NFV to dynamically route and
provision edge services [6]–[8]; however, standardizations are
still missing, and concrete implementations are rare.

In [9] Taleb et al. implement their proposed Follow-me
Cloud using OpenFlow. Recently, in [10] they adapted their
system to a Follow Me Edge-Cloud that works in the proposed
ETSI MEC environment [6]. The goal of the underlying
concept is to provide a continuous connection even in case
either the user or the service migrates to a different location.
This is quite a different and more ambitious goal than ours,
and as such requires a more complex system and more routing
entries in the OpenFlow tables, making it harder to scale.

Schiller et al. developed CDS-MEC [11], an NFV/SDN-
based MEC platform, which provides both edge application
provisioning and traffic management. It also focuses on the
ETSI MEC Reference Architecture [6] and relies on OpenFlow
to redirect UE requests to a nearby edge computing host. Their
work primarily addresses LTE; however, the concept should
work for 5G as well. While their platform would also allow
for transparent edge computing services, it permits a diverse
set of redirection rules to be set up by the user; thus, our
main goal was not addressed explicitly. We do not target a
specific user – it is all about filtering specific cloud services.
Furthermore, their focus was on building a MEC platform, and
as such it does not address UE migration yet.

In addition to generic OpenFlow switching (as in our
proposal), a full solution for LTE is provided in [11], includ-
ing decapsulating/encapsulating the GPRS Tunneling Protocol
packets between the eNB and the Evolved Packet Core (which
is not possible yet with today’s OpenFlow switches). Another
difference is our full integration into an open source SDN
controller (POX), which allows for on-demand rule generation
and fine-grained timeouts to limit the number of concurrent
rules in the switches (see section III). As another benefit, our
controller can learn the necessary switch ports automatically,
reducing manual configuration.

III. TRANSPARENT EDGE SERVICES

Our vision is that developers are able to develop edge
services as easily as conventional cloud services and do
not need to distinguish between developing a cloud or edge
service. The parts that shall be executed in the edge can be
specified later, either manually, or automatically by applying

3https://aws.amazon.com/greengrass/, last accessed: 2019-03-19
4https://cloud.google.com/solutions/iot/, last accessed: 2019-03-19
5https://azure.microsoft.com/services/iot-edge/, last accessed: 2019-03-19

Fig. 2. Perceived cloud vs. real cloud.

machine learning models, or on-the-fly by observing the
current network utilization.

Our proposed solution addresses this goal by using SDN.
The basic principle is that SDN-enabled switches in the 5G
network redirect user requests for registered services (identi-
fied by domain name and port) to the closest (as measured by
network latency) edge computing node hosting the requested
service. The procedure (visualized in fig. 2) works as follows:
First, the client requests a service as it would request a
conventional cloud service. Then the network intercepts the
request and redirects it to the closest available edge node.
Finally, the edge node processes the request and responds to
the client. As the interception happens automatically by SDN
switches in the network, it looks to clients as if the response
came from the addressed cloud instance. Note that the edge
application itself may utilize the cloud to process the request.

To achieve transparency towards the UE, our solution uses
the packet filtering and rewriting capabilities of OpenFlow
[12]. Fig. 3 visualizes how our approach makes use of these
redirection functionalities. First, the gNB switch matches an
incoming packet against the active rules in its flow tables.
If a matching flow entry is found, the packet is forwarded
accordingly. In case of a miss, the packet is forwarded to the
SDN controller as a PacketIn message.

The SDN controller (keeping track of the domain-to-IP
mappings) compares the destination IP/port combination of
the PacketIn message against the list of registered edge
services. If the request is intended for one of those services,
the controller assigns the UE to the closest edge host providing
the requested edge application. If no matching entry is found,
the packet needs to be forwarded to the cloud according to the
default switching rules. In both cases the controller returns a
FlowMod message containing the Redirect instructions for
the switch. Additionally, the message contains an idle timeout
value which causes the redirect entry to be invalidated when no
matching packet in the given period is received. This improves
the forwarding performance by keeping forwarding tables lean.

https://aws.amazon.com/greengrass/
https://cloud.google.com/solutions/iot/
https://azure.microsoft.com/services/iot-edge/


Fig. 3. Routing with a registered service IP: The request is redirected to the closest edge server; transparent to the client (UE). For subsequent requests to
the same service, the redirection rule is already known to the gNB; the packet is forwarded directly to the edge host (and not to the controller anymore).

IV. UE MIGRATION

When users move and connect to different base stations
(gNBs), the network repeatedly needs to determine new best
edge hosts for the given edge application. Fig. 4 shows what
happens when a UE migrates from one gNB to another. In this
case, the local SDN switch would have no flow entry for the
newly arrived UE yet, and thus forward the packet to the SDN
controller. Since the SDN controller tracks the attachment
point of each UE, it immediately detects the migration and
updates the current location of the device.

Depending on the requirements of the edge service, the SDN
controller can proceed in case of a UE migration in one of
the following ways. It could decide to connect the UE to the
previous edge application instance, to migrate the UE to a
service running in an edge host located in closer proximity
(as measured by network latency), or to use any other host
selection strategy based on entirely different criteria. In our
prototype, we assume stateless edge applications, and thus
forward the UE to the closest edge host that provides the
required service. As a result, the request would always be
routed such that the lowest possible latency can be achieved.
Note that further host selection algorithms using different
criteria might be used.

While the concept of transparent edge computing could also
be achieved by intercepting and manipulating the correspond-
ing DNS requests, a DNS-based approach fails in combination
with UE migration. With each such migration, the UE would
have to issue new DNS requests to find out the new optimal
edge host. So, while DNS offers the desired separation of
service identification and service location, it is usually not
used to provide continual updates of the current location of a
service.

V. KNOWN LIMITATIONS OF OUR PROTOTYPE

While the functional range of edge services is not restricted
by our prototype, restrictions for the used transport layer
protocol do exist. When a UE needs to be assigned to a
different edge host, open TCP connections cannot be migrated.
A new connection between the UE and the new edge host
has to be established. As a result, the prototype works best
for UDP and short-lived TCP connections. We also did not
investigate how to deal with secure communication (TLS).

Similar to existing approaches used by CDNs, a (suboptimal)
solution could be to have the edge application maintain a copy
of the private key. We did also not yet integrate a process for
registering the cloud services, which shall be redirected to
edge applications, with the edge platform operator.

VI. PERFORMANCE AND SCALING OPTIMIZATIONS

Considering that 5G is targeted to support one million IoT
devices/km2, excellent performance and scalability are crucial.
Regarding these aspects, we must pay attention to two poten-
tial bottlenecks: (i) the number of flow entries per SDN switch
and (ii) the number of UEs per SDN controller. To address
the number of flow entries per switch, the easiest solution
would be to distribute the UEs evenly among multiple switches
per gNB. This would immediately reduce the OpenFlow rules
belonging to a switch to a fraction of the overall rule set.

Another approach would be to distinguish between switches
that process generic traffic and others that process edge-related
traffic. As shown in fig. 5, this would lead to two-stage
filtering. At the first stage, we could only check whether the
destination IP/port combination matches a registered service. If
no matching entry is found, the packet is forwarded according
to the default switching rules. If, however, the packet matches
a registered cloud service at the first stage, it is forwarded to
a second switch dedicated solely to edge processing. Only the
latter contains all active edge application sessions attached to
this gNB. In case of a match (i.e., there exists a rule with the
current UE IP and port), the UE request is forwarded to its
corresponding edge host and port. In case of a miss, the packet
is forwarded to the SDN controller as a PacketIn message.
The controller then assigns the UE to the closest edge host
which provides the given edge application.

As an additional benefit of the separation between regular
and edge switches, they could be assigned to different SDN
controllers. This would allow better scaling of the latter and
thus help mitigate the second bottleneck. The main network
controller would only need to handle the separation between
regular and edge traffic, while the edge controller would be re-
sponsible for assigning UEs to a specific edge. Since the main
controller would only handle the separation between regular
and edge-related traffic (rules that change only occasionally),
instead of using timeouts we could permanently install the flow



Fig. 4. UE migration (tracked by SDN controller).

entries for registered services in the switches. Outdated rules
could be deleted on demand only, e.g., when the DNS lookup
reveals a new IP address for one of the registered services.

For additional scalability, the main controller could make
use of sharding to distribute the edge connections evenly
among multiple edge switches. Those edge switches, in turn,
could be assigned to separate edge controllers, further dis-
tributing the load (as shown in fig. 5). The distribution could
be based, e.g., on the IP address or the MAC address of the
UE. Please note that this needs to be based on an attribute that
does not change on migration, since a UE must be assigned to
exactly one controller to be able to track the current location.

If, however, the goal is to only speed up the filtering without
increasing the number of switches, another improved approach
could make use of two flow tables (instead of only one) within
a switch. The OpenFlow specification [12] allows for multiple
flow tables which can be used to match packets in several
steps. As in the approach mentioned above, we could do the
matching in the same two stages; however, this time within a
single switch. Instead of forwarding a packet designated for
an edge application to another switch, the rule would continue
processing in a follow-up table. This architecture would be
flexible enough to allow to start with a single controller and
distribute the load to multiple controllers when the need arises.

VII. CONCLUSION AND FUTURE WORK

Compared to similar solutions mentioned in section II, our
prototype requires fewer flow entries in the switches, leading
to better performance and scalability. The current implemen-
tation and Mininet testbed provide a solid basis for further
research and development. Presently, we are working on a
flexible version that allows getting a quantitative comparison
of the different scaling optimizations. Our plan is to improve
the prototype and to deploy it on a physical testbed.

Our transparent edge service solution reveals an interesting
side benefit: If the edge application provider does not have an
agreement with an edge platform provider, and thus the service
domain has not been registered in the given network, the UE

Fig. 5. Two-stage filter and sharding of UEs to improve scalability. UE and
migration tracking take place in edge SDN controllers only.

request would be delivered to the targeted cloud service. While
this does not have the intended benefits of edge computing,
it might be a viable solution in many cases. Furthermore, it
allows the cloud service provider to follow the lean startup
method and track user demand first and deploy edge appli-
cations later or only in networks and regions with enough
demand. In general, this incremental deployment approach
has proven to be a prerequisite for successful adoption of
innovative technologies. By limiting the necessary changes to
one edge network at a time, edge application providers and
network operators gain a lot of flexibility and freedom.

REFERENCES

[1] ETSI, “MEC in 5G networks,” ETSI White Pap. No. 28, 2018.
[2] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Ni-

akanlahiji, J. Kong, and J. P. Jue, “All One Needs to Know about
Fog Computing and Related Edge Computing Paradigms: A Complete
Survey,” CoRR, vol. abs/1808.0, 2018.

[3] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Archi-
tecture and Computation Offloading,” IEEE Commun. Surv. Tutorials,
vol. 19, no. 3, pp. 1628–1656, 2017.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision
and Challenges,” IEEE Internet of Things J., vol. 3, no. 5, 2016.

[5] W. Shi and S. Dustdar, “The Promise of Edge Computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[6] ETSI, “GS MEC 003 - V2.1.1 - Multi-access Edge Computing (MEC);
Framework and Reference Architecture,” ETSI, Tech. Rep., 2019.

[7] ——, “GR MEC 018 - V1.1.1 - Mobile Edge Computing (MEC); End
to End Mobility Aspects,” ETSI, Tech. Rep., 2017.

[8] B. Blanco, J. O. Fajardo, I. Giannoulakis, E. Kafetzakis, S. Peng,
J. Pérez-Romero, I. Trajkovska, P. S. Khodashenas, L. Goratti,
M. Paolino, E. Sfakianakis, F. Liberal, and G. Xilouris, “Technology
pillars in the architecture of future 5G mobile networks: NFV, MEC
and SDN,” Comput. Stand. Interfaces, vol. 54, pp. 216–228, 2017.

[9] T. Taleb, P. Hasselmeyer, and F. G. Mir, “Follow-me cloud: An
OpenFlow-based implementation,” Proc. GreenCom-iThings-CPSCom,
pp. 240–245, 2013.

[10] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “On Enabling
5G Automotive Systems Using Follow Me Edge-Cloud Concept,” IEEE
Trans. Veh. Technol., vol. 67, no. 6, pp. 5302–5316, 2018.

[11] E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan, and T. Braun,
“CDS-MEC: NFV/SDN-based Application Management for MEC in 5G
Systems,” Comput. Networks, vol. 135, pp. 96–107, 2018.

[12] Open Networking Foundation, “OpenFlow Switch Specification v1.5.1,”
Open Networking Foundation, Tech. Rep., 2015.


	Introduction
	Related Work
	Transparent Edge Services
	UE Migration
	Known Limitations of Our Prototype
	Performance and Scaling Optimizations
	Conclusion and Future Work
	References

